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Abstract—LLM app stores have seen rapid growth, leading to
the proliferation of numerous custom LLM apps. However, this
expansion raises security concerns. In this study, we propose
a three-layer concern framework to identify the potential
security risks of LLM apps, i.e., LLM apps with abusive
potential, LLM apps with malicious intent, and LLM apps
with backdoors. Over five months, we collected 786,036 LLM
apps from six major app stores: GPT Store, FlowGPT, Poe,
Coze, Cici, and Character.AI. Our research integrates static
and dynamic analysis, and uses a complementary approach to
detect harmful content, combining a self-refining LLM-based
toxic content detector with rule-based pattern matching. Ad-
ditionally, we constructed a large-scale toxic word dictionary
(i.e., ToxicDict) comprising over 31,783 entries. We used these
methods to uncover that 15,414 apps had misleading descrip-
tions, 1,366 collected sensitive personal information against
their privacy policies, and 15,996 generated harmful content
such as hate speech, self-harm, extremism, etc. Additionally, we
evaluated the potential for LLM apps to facilitate malicious
activities, finding that 616 apps could be used for malware
generation, phishing, etc. We reported these security risks
to relevant platforms, including OpenAI and Quora, which
acknowledged and appreciated our findings. The platforms are
actively investigating the flagged apps; as of the submission of
this paper, 1,643 apps have been removed from the GPT Store.

1. Introduction

Large Language Models (LLMs) such as ChatGPT [38],
Gemini [27], and Copilot [36] are at the forefront of the
rapidly evolving LLM app store ecosystem. These platforms
host numerous custom LLM apps that significantly en-
hance their functionality. Custom LLM apps are specialized
apps built on top of general-purpose LLMs, designed for
specific tasks or domains by utilizing custom instructions,
knowledge bases, and integrations with external services.
These apps are hosted on LLM app stores [80]. LLM app
stores are experiencing a surge in popularity, as evidenced
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by platforms like FlowGPT [68] with its 4 million monthly
active users and recent $10 million funding [37].

Unfortunately, the nascent stage of this development car-
ries security concerns. For example, instructions serve as the
“source code” for LLM apps, allowing developers to dictate
the behavior of these apps. If these instructions contain
inappropriate content, such as jailbreaking prompts [25],
they can lead to malicious behavior by the LLM apps,
adversely affecting users. In addition, malicious developers
might intentionally upload harmful knowledge files or inte-
grate malicious third-party services to exploit the powerful
capabilities of LLM apps for nefarious activities such as
generating malware code or crafting phishing emails.

Recent OpenAI threat reports [40] have highlighted sev-
eral instances of LLM misuse over the past three months,
underscoring the significant threat that exists within LLM
app ecosystems. Despite the implementation of various
policies [21], [22], [48], [63] aimed at regulating LLM
app behavior, these policies are often vague and not rig-
orously enforced. Prominent platforms like OpenAI [48]
and Coze [21] claim to conduct regular reviews of apps
in their stores and promptly remove those that violate their
policies. These review mechanisms include OpenAI’s Mod-
erations [44] endpoint, red teaming [45] methods, etc.
During our five-month crawl of LLM apps, we observed that
5,462 apps were removed after a certain period, 132 of
these removals were likely due to policy violations. Con-
sider an illustrative example from OpenAI’s GPT Store. An
app named “Personal Doctor” was removed for dispensing
medical advice, which violated OpenAI’s usage policies.

Despite these measures, the overwhelming number of
LLM apps in popular stores poses a substantial challenge
for platform administrators. For example, with GPT Store
hosting over three million LLM apps [43] and FlowGPT
housing hundreds of thousands [53], the scale severely
strains review processes. This work examines six prominent
LLM app stores, uncovering significant discrepancies in
regulatory enforcement across platforms and highlighting
critical security concerns within the LLM app ecosystem. To
our knowledge, this is the first comprehensive and in-depth
study examining the current state of LLM app store security.
Previous research, notably Lin et al.’s [34] empirical study
on LLM-integrated malicious services, has primarily focused
on explicitly malicious paid LLM services, which are costly
and limited in number. In contrast, we investigate LLM app



stores, where the development and usage costs of LLM apps
are minimal, and the potential for widespread impact due
to security vulnerabilities is substantial. Our objective is to
shed light on the overlooked aspects of LLM app stores and
conduct a thorough examination of their security landscape.

We propose a comprehensive three-layer framework,
illustrated in Figure 1, for systematically analyzing LLM
app security concerns. The first layer, LLM apps with
abusive potential, examines inconsistencies and potential
misuse without clear evidence of malicious intent, such
as mismatched descriptions, improper data collection, or
suspicious author domains, primarily affecting individual
users. The second layer, LLM apps with malicious intent,
addresses apps designed to harm users directly through em-
bedded harmful functionalities, building on the first layer’s
analysis. The third layer, LLM apps with backdoors,
focuses on security risks in apps that have already been iden-
tified as malicious in the second layer and are compromised
with backdoors or security flaws that could be exploited
by attackers. Over five months, we crawled 786,036 LLM
apps from six app stores: GPT Store [42], FlowGPT [68],
Poe [54], Coze [18], Cici [17], and Character.AI [60]. Our
study combined static and dynamic analysis to identify
15,414 apps with misleading descriptions, 1,366 apps that
collected sensitive data in violation of their privacy policies,
and 15,996 apps containing harmful content, including hate
speech, self-harm, and extremism. Additionally, we evalu-
ated 616 apps capable of executing malicious actions such
as malware generation and phishing, providing real-time
insights into emerging threats for timely interventions.

We reported these findings to the respective platforms,
which expressed appreciation for our efforts in identi-
fying risks and backdoors, acknowledged the value of
our findings, and committed to reviewing the flagged
apps while welcoming further insights. As of the sub-
mission date, we observed that out of the 2,587 potentially
problematic LLM apps we reported to the GPT Store, 1,643
have already been removed. This demonstrates the value and
effectiveness of our efforts in prompting platforms to take
action and improve the safety of their app ecosystems.
Contributions. Our primary contributions1 are as follows:

1) Our research presents the first comprehensive empirical
study of security concerns in LLM app stores. We
propose a novel three-layer concern framework for
LLM app security analysis, encompassing LLM apps
with abusive potential, LLM apps with malicious intent,
and LLM apps with backdoors.

2) We combined static and dynamic approaches to facil-
itate our analysis. Harmful content is detected using a
complementary approach that integrates a self-refining
LLM-based toxic content detector with rule-based pat-
tern matching, achieving an accuracy of 92.51%. Ad-
ditionally, our framework incorporates dynamic inter-
action with LLM apps to observe their actual behavior.

1. Our artifacts are publicly available at https://github.com/security-
pride/LLM-App-Security.

3) We analyzed 786,036 LLM apps from six stores. Our
investigation of these apps revealed widespread security
issues, including 16,376 apps with abusive potential,
15,996 apps with malicious intent, and 616 apps with
backdoors. We have reported these apps to the re-
spective platforms and received positive feedback from
organizations like OpenAI and Quora who are actively
investigating the flagged apps. As of the submission
of this paper, we have observed that 1,643 apps have
already been removed from the GPT Store.

2. Background

2.1. LLM App Store

The rapid development of LLMs has propelled the
growth of a series of downstream applications, such as
LLM app stores, on-device LLMs, and expert domain-
specific LLMs [72]. Among these, LLM app stores have
emerged as prominent centralized platforms for hosting and
distributing custom LLM-powered applications. These stores
offer a diverse array of intelligent services tailored to various
purposes, tasks, and scenarios, allowing users to easily
discover and access LLM apps [80]. While the LLM app
ecosystem has unlocked tremendous potential for innovation
and efficiency, it also presents opportunities for malicious
actors to exploit LLM capabilities for harmful purposes.

Several factors contribute to the security challenges of
LLM app stores. The low barrier to entry for creating
LLM apps enables individuals with minimal technical ex-
pertise to develop and deploy potentially malicious apps,
a problem exacerbated by inadequate vetting processes in
some stores. Additionally, the ability to integrate exter-
nal knowledge sources and third-party services opens
avenues for exploitation by malicious actors who can spread
disinformation, propagate scams, or compromise user pri-
vacy. The security risks are further amplified by the ability
of LLMs to generate highly convincing content. This
capability allows for the creation of apps that produce fake
news, impersonate legitimate entities, or manipulate public
opinion with alarming effectiveness. Moreover, the lack of
comprehensive monitoring and enforcement mechanisms
in LLM app stores, combined with the high volume and
rapid pace of app development, makes it challenging to
promptly identify and remove malicious apps.

2.2. Policy Regulations

To address the challenge of ensuring compliance amidst
the swift expansion of LLM apps, each LLM app store has
established clear policies to regulate the development pro-
cess. These policies outline the guidelines and restrictions
developers must follow when creating and publishing their
apps on their respective platforms. As shown in Table 1, the
policies typically cover three main aspects:

• Privacy policy informs users about the data collection
and usage practices of the app. While most LLM app
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Figure 1: Overview of the three-layer security concern framework.

stores have detailed privacy policies [20], [19], [46],
[56], [62], some like FlowGPT [70] have incomplete
policies that require further refinement.

• Usage guidelines help developers create and maintain
apps [48], [57]. Although FlowGPT [69] and Charac-
ter.AI [61] have guidelines, their content is simplistic.
Some platforms, like Coze and Cici, lack guidelines,
highlighting the need for comprehensive policies.

• Terms of service outlines the legal agreements between
the app store and users. Notably, all the LLM app stores
examined have terms of service in place [21], [22],
[47], [55], [63], [71].

TABLE 1: LLM app stores and their policy regulations.

Store name Privacy policy Usage guidelines Terms of service

GPT Store
FlowGPT

Poe
Coze
Cici

Character.AI

indicates detailed policy, indicates incomplete policy, indicates the
absence of policy.

LLM app stores employ both automated and manual
review processes to enforce policies, using techniques like
machine learning-based moderation [44] and red team-
ing [45]. However, they still face challenges in identifying
and mitigating malicious apps due to rapid development and
content complexity. Malicious developers often exploit these
challenges to circumvent moderation mechanisms. Addition-
ally, unlike conventional apps that typically provide their

privacy policies detailing permissions, data collection, and
usage [65], [74], LLM app developers often only provide
privacy policies of third-party platforms when used. This
leaves users uncertain about how their data is being handled
within the LLM app itself, highlighting a gap in transparency
and user protection in the LLM app ecosystem.

2.3. Threat Model

Assumptions and threat scenarios. As shown in Figure 1,
our three-layer concern framework encompasses various
LLM app threat scenarios. We assume that these scenarios
exist in LLM app stores. First, for LLM apps with abusive
potential, we posit that some developers create apps with in-
consistent descriptions or improper data practices, exploiting
inadequate app store oversight. These primarily affect indi-
vidual users through privacy violations and misunderstand-
ings. Second, regarding LLM apps with malicious intent, we
assume developers may intentionally design apps to generate
harmful content or enable illegal activities, posing direct
threats to users and potential broader societal harm. Finally,
for LLM apps with backdoors, we assume that LLM apps
may contain security flaws that malicious actors can leverage
for various attacks, including malware generation, phishing,
data theft, service disruption, and disinformation propaga-
tion. We further assume that these backdoors can have far-
reaching consequences beyond immediate users, potentially
causing severe financial, reputational, and societal damage.
Our goal. The primary goal of this study is to illuminate
the security concerns prevalent in LLM app stores. Through
an in-depth analysis of popular stores and their hosted apps,
we aim to uncover hidden risks in this growing ecosystem.



TABLE 2: Composition of data collected from LLM app stores.

Store name LLM app (A) Description Author Instructions Knowledge files Third-party services Visibility1

# A # A % A # A % A # A % A # A # files # A # Policy # Schema

GPT Store 663,119 630,420 95.07% 241,621 36.44% 22,961 3.46% 45,690 192,714 5,498 6,547 5,767
FlowGPT 34,345 34,339 99.98% 9,374 27.29% 24,983 72.74% 0 0 / / /

Poe 16,544 16,050 97.01% 8,728 52.76% 6,063 36.65% 0 0 / / /
Coze 51,918 19,666 37.88% 33,606 64.73% 1,491 2.87% 0 0 0 / /
Cici 13,060 13,060 100.00% 9,468 72.50% 0 0.00% / / / / /

Charcter.AI 7,050 7,050 100.00% 6,252 88.68% 1,819 25.80% / / / / /

Total 786,036 720,585 91.67% 309,049 39.32% 57,317 7.29% 45,690 192,714 5,498 6,547 5,767 /
1 indicates public, indicates workspace-specific [43] (only visible to specific users), indicates private.
2 “/” indicates the platform does not support this functionality.

Our objectives include identifying and categorizing LLM
app security issues, examining current regulatory measures,
and proposing mitigation strategies for insecure LLM apps.

3. Methodology

The methodology consists of several components. § 3.1
Data Collection covers data gathering from LLM app stores
and the construction of ToxicDict. § 3.2 Detection of LLM
Apps with Abusive Potential includes inconsistency anal-
ysis and malicious domain detection. § 3.3 Detection of
LLM Apps with Malicious Intent uses a self-refining toxic
content detector and rule-based pattern matching. Finally,
§ 3.4 Verification of LLM Apps with Backdoors evaluates
malicious behavior and explores potential attack scenarios.

3.1. Data Collection

3.1.1. LLM apps data. In the initial phase of our study, we
systematically collected data from various LLM app stores
known for hosting customized LLM apps. Our primary data
sources included GPT Store [42], FlowGPT [68], Poe [54],
Coze [18], Cici [17], and Character.AI [60]. To efficiently
gather data from these sources, we developed an automated
web scraping tool using Selenium [59], ensuring that all
scraping operations were performed within each platform’s
rate limits to avoid disrupting normal operations. Table 2
shows the composition of the data we collected from each
LLM app store. Each platform’s LLM app has a unique ID.
Therefore, we use the ID as the identifier for LLM apps to
count the number and serve as a reference.

• GPT Store: We utilized the GPTZoo dataset [30],
which includes metadata for 730,420 LLM apps. Due
to the lack of direct information on instructions, knowl-
edge files, and third-party services in the OpenAI GPT
Store, we applied reverse engineering to extract instruc-
tions and knowledge file data. Our approach leverages
specific prompts to retrieve this information from the
sandbox while verifying response consistency and fil-
tering common refusal patterns to mitigate inaccuracies
caused by refusals or hallucinations2. To comply with

2. For details, please refer to https://github.com/security-pride/LLM-
App-Security.

OpenAI’s policies, this process was limited by inter-
action restrictions, making it highly time-consuming.
So far, we’ve collected instructions for 22,961 apps
and identified 45,690 apps containing knowledge files.
Additionally, using the Free GPTs Scraper [58] and
the GPT Store’s API endpoint, we gathered third-party
service data for 182,697 apps, obtaining 5,767 Action
schemas for 5,498 of them.

• FlowGPT: The homepage of FlowGPT displays de-
tailed categories of LLM apps. By traversing all cat-
egories on the homepage using the FlowGPT API
endpoint, we obtained specific information for 34,345
LLM apps. Since FlowGPT allows developers to decide
whether to share instructions publicly, we were able to
obtain instructions for 24,983 of these apps.

• Poe: We used an automated tool to scrape the basic
information of all categories of LLM apps from Poe,
totaling 16,544 apps. We also checked each LLM app’s
page to see if instructions were publicly available,
ultimately obtaining 6,063 sets of instructions.

• Coze: Coze offers two versions: one for mainland
China and one for global use, with domains ending in
.cn and .com, respectively. The LLM apps available
on these two versions are not entirely the same. We
scraped basic information for a total of 51,918 LLM
apps from both versions of the store, but only 1,491 of
these apps publicly provided instructions. Additionally,
Coze allows developers to seamlessly integrate third-
party plugins from its plugin store without the need to
provide third-party privacy policies.

• Cici: Cici is a popular platform that primarily features
virtual character LLM apps and supports switching
between fifteen languages. However, the available in-
formation on these apps is quite limited, as creating an
LLM app on Cici only requires a name and description.
We collected metadata for a total of 13,060 LLM apps.

• Character.AI: Character.AI is also an LLM app store
primarily featuring virtual character apps and support-
ing voice interactions. Similar to the GPT Store’s dis-
play method, Character.AI does not fully showcase all
categories of LLM apps. Therefore, we had to scrape
LLM apps by searching with keywords and saving the
search results. To focus our investigation on the security
aspects of LLM apps in LLM app stores, we selected
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232 keywords from our ToxicDict (detailed in § 3.1.2)
categorization to use as search terms. This approach
allowed us to scrape a total of 7,050 LLM apps and
1,819 publicly available instructions.

We undertook several preprocessing steps to ensure our
dataset’s integrity and usability. Initially, we cleaned the
data to remove incomplete, irrelevant, or duplicate entries.
We then standardized the data formats across all platforms,
ensuring consistency in metadata representation. This in-
volved normalizing key attributes such as ID, description,
author, instructions, knowledge files, and third-party service
information. Additionally, we integrated third-party service
data where applicable. Other attributes were retained as
supplementary information for future experiments. Finally,
we conducted thorough quality assurance checks to verify
the accuracy and completeness of the processed data.

3.1.2. Construction of ToxicDict. Considering the limited
scope of currently available public toxic word lists, we
constructed a comprehensive dictionary, ToxicDict, which
encompasses 31,783 toxic words across 14 categories in
eight languages. These categories include:

Hate, Self-Harm, Sexual, Violence, Profanity, Ex-
tremism, Spam, Minors, Regulated, Personal De-
cisions, PII, Links, Gambling, and Political.

The selection of these categories was informed by the
policies of LLM app stores and the OpenAI Moderation
endpoint [44], ensuring comprehensive coverage of toxic
content types, from hate speech and self-harm to privacy
violations and spam. Figure 2 illustrates the distribution
of languages and sources of the words in ToxicDict. The
dictionary includes words from eight languages, selected
based on their prevalence among LLM apps in the GPT
store [42]. In detail, the sources of toxic words include:
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Figure 2: Language and source distribution of words in
our ToxicDict dictionary.

• Policy collection: We extracted toxic words from pri-
vacy policies, usage guidelines, and terms of service
of LLM app stores. This ensures our ToxicDict reflects
content explicitly prohibited by these platforms, aiding
in identifying LLM app violations and potential misuse.

• Public dataset: We included words from established
public datasets on platforms like GitHub [24], [29],

[50] and Hugging Face [33], [12], providing a founda-
tional set of known harmful or inappropriate terms.

• Extension: We utilized the powerful language capabil-
ities of GPT-4o [39] to expand our existing word lists,
identifying and generating additional toxic words that
fit within our defined categories.

• Translation: To cover a broader range of languages,
we translated toxic words from English and Chinese
into other languages using GPT-4o. Throughout the
translation process, we instructed GPT-4o to preserve
the linguistic nuances and characteristics of each target
language as much as possible.

3.2. Detection of LLM Apps with Abusive Potential

3.2.1. Inconsistency analysis. Content inconsistency. We
developed a consistency analysis tool based on Llama3-
8B [35], as shown in Algorithm 1, which takes the descrip-
tion and instructions of LLM apps as input.

Algorithm 1: Consistency Analysis Tool
Input: LLM app dataset D, Consistency analysis model M
Output: Set of LLM apps with inconsistency S, Summary of

inconsistency analysis
1 S ← ∅
2 foreach LLM app A ∈ D do
3 Extract id, description, instructions from A
4 P ← Construct Prompt(id, description, instructions)
5 for attempt← 1 to 3 do
6 O ←M(P )
7 (consistency score, reason)← Extract Results(O)
8 if consistency score ̸= None then
9 break

10 if consistency score = 0 then
11 consistency score← “Requires external feedback”
12 reason← “Manual review needed”

13 if consistency score < threshold then
14 S ← S ∪ {(A, consistency score, reason)}

15 categories← Categorize Reasons(S)
16 summary← Generate Summary(S, categories)
17 return S, summary

The tool assesses consistency between description and
instructions, considering relevance, detail alignment, and
task coherence. It assigns a consistency score from 0 to 1 (0
indicating unrelated content, 1 indicating perfect alignment).
We manually set thresholds at 0.1 intervals and provided
examples for each range to guide the model’s learning. The
tool also provides a rationale for the score to aid analysis.
The output is typically in JSON format, including fields
like id, consistency score, and reason. If the tool fails to
produce a correct output, it attempts the check up to three
times. Persistent errors are flagged for external review. We
validate the tool’s accuracy through sampling and adjust the
prompt based on the results to ensure optimum performance.
Our evaluation shows that the tool achieves reliable perfor-
mance, with a false positive rate of approximately 7%. After
detection, reasons are categorized, and an analysis summary
of inconsistencies is provided. This analysis is crucial for



auditing potential misuse, as inconsistencies can mislead
users and hide malicious intent.
Data type inconsistency. To analyze the data types collected
by third-party services from the Action schema [41], we
extracted relevant information using natural language pro-
cessing (NLP) techniques. Our goal is to uncover potential
LLM app abuse, particularly focusing on sensitive data
types that could be misused for profiling users or targeted
advertising. We parsed the Action schema JSON files to
list the data types collected by third-party services. Using
NLP, we normalized and categorized these data types, creat-
ing a comprehensive list. We then cross-referenced this list
with 32 sensitive data types identified from LLM app store
privacy policies. These sensitive data types include personal
identifiers, location data, conversation history, etc. To assess
the consistency between the collected data and the declared
data collection practices, we used Polisis [52] to analyze
the privacy policies of LLM app stores. Polisis automat-
ically detects and categorizes data practices, allowing us to
compare the data types declared in the privacy policies with
those collected, as stated in the Action schema.

3.2.2. Malicious domain detection. Some LLM app de-
velopers publicly disclose their domain, referred to as the
author domain. To ensure the safety and legitimacy of these
domains, we utilize tools such as VirusTotal [13] and Google
Safe Browsing [28] to scan these domains for any malicious
activity. VirusTotal aggregates many antivirus products and
online scan engines to check for viruses, worms, trojans,
and other kinds of malicious content detected in the scanned
domains. Google Safe Browsing provides regularly updated
lists of unsafe URLs containing malware or phishing con-
tent, which is used to protect users from unsafe web content.
If an author domain is flagged as malicious by these tools,
it implies that the developer associated with this domain
may have malicious intent or has been compromised. This
could potentially mean that the LLM app itself is being used
to disseminate harmful content or engage in other abusive
activities. Similarly, we perform scans on Action domains,
which are the domains associated with third-party services
used by the LLM app. Malicious domain detection helps
uncover LLM apps with abusive potential by identifying
domains that are linked to known malicious activities.

3.3. Detection of LLM Apps with Malicious Intent

We use a complementary approach to detect harmful
content, combining a self-refining LLM-based toxic content
detector with rule-based pattern matching. LLM-based de-
tector considers context and cultural nuances, filtering out
benign phrases like “Don’t output violent content”, while
the rule-based method leverages our extensive ToxicDict for
immediate and targeted detection as a conservative measure.
The intersection of detection results from both methods
improves accuracy by combining their strengths, while their
union ensures that all potentially malicious apps are cap-
tured for subsequent experiments.

Algorithm 2: Self-refining Toxic Content Detector
Input: LLM app dataset D, LLM-based toxic content detector

M
Output: Set of LLM apps with toxic content T , Summary of

toxic content analysis
1 H ← ∅ // H is the set of challenging instances
2 T ← ∅
3 foreach LLM app A ∈ D do
4 Extract id, instructions from A
5 P ← Construct Prompt(id, instructions)
6 O ←M(P )
7 (toxicity scores, toxic words)← Extract Results(O)
8 if toxicity scores = None then
9 H ← H ∪ {A}

10 else
11 T ← T ∪ {(A, toxicity scores, toxic words)}

12 if |H| > 0 then
13 sampled challenging instances← Random Sample(H, 10)
14 Manual Review(sampled challenging instances)
15 foreach instance ∈ sampled challenging instances do
16 Update Model(M, instance)

17 summary← Generate Summary(T )
18 return (T, summary)

3.3.1. Self-refining LLM-based toxic content detector.
The self-refining LLM-based toxic content detector lever-
ages the advanced capabilities of LLMs (i.e., Llama3-8B)
to understand and classify toxic content, as shown in Algo-
rithm 2. The prompt clearly defines and categorizes toxic
content, covering the 14 toxic categories of the ToxicDict,
and specifies the input and output format. The detection
process takes as input the id and instructions of LLM apps,
then evaluates the toxicity of the instructions according to
the 14 toxic categories, scoring them on a scale of 0 to 1,
where 0 indicates no presence of the toxic category content
and 1 indicates a high presence of that category content.
We manually set thresholds at 0.1 intervals and provided
examples for each range. Additionally, the detector provides
the reason for the score and identifies or expands on toxic
words extracted from the instructions. Toxic words in the
detection results are used only to expand the ToxicDict
and not to determine malicious intent. The standard out-
put format includes id, toxicity scores (a list), reason, and
toxic words. If there is no valid output, those instances are
marked as challenging instances. Ten challenging instances
are randomly selected for manual labeling of toxicity scores
and reason, which are then used as external feedback for
the detector. The remaining instances are re-evaluated, with
each instance being tested up to three times. The detector
continuously adjusts and optimizes its ability to identify
toxic content based on the results, making it self-refining.

3.3.2. Rule-based pattern matching. This process began
with an initial detection step using the constructed ToxicDict.
Each LLM app’s description and instructions were scanned
using ToxicDict, where the detection algorithm checked for
the presence of any toxic words listed in the dictionary
through simple string matching and regular expressions.
This straightforward approach ensured that we accurately



identified toxic words without introducing any semantic
ambiguities or errors in the LLM app’s behavior caused by
overly complex transformation rules.
Implementation and execution. The rule-based pattern-
matching process was implemented in several stages. Data
preparation involved preprocessing the data, including de-
scriptions and instructions of LLM apps, with each text
segment treated as an individual unit for scanning. Pattern
matching algorithm applied a dictionary derived from Tox-
icDict to scan each text segment, using both direct keyword
matching and regular expressions to identify toxic content.
Detection results were recorded for each segment, logging
instances of detected toxic words along with details such as
content type and specific words or phrases identified. Itera-
tive refinement followed an adaptive, iterative approach to
improve accuracy. The initial scan used a broad word list
to detect and analyze word frequency across LLM apps.
To reduce noise from neutral terms, a dynamic “filtered
words” list was introduced. The system examined frequently
detected words, assessing their context. Words that appeared
consistently in isolation, without other ToxicDict terms, yet
with high frequency, were considered for filtering. This
process helped eliminate common false positives while pre-
serving sensitivity to genuinely problematic content, which
often involved multiple toxic terms in combination.

The use of dictionary-based rules ensured that the detec-
tion process was efficient and scalable, capable of handling
large volumes of data. This approach allowed us to quickly
identify and flag potential instances of toxic content across
numerous LLM apps.

3.4. Verification of LLM Apps with Backdoors

LLM apps with backdoors are applications intentionally
designed with exploitable backdoors or security weaknesses,
allowing attackers to manipulate their behavior for harmful
activities. To assess whether such apps can indeed facilitate
malicious actions, we conducted controlled experiments in
virtual environments, ensuring no real-world impact. All
artifacts were deleted post-experiment. We focused on five
common attack scenarios where LLM apps could be partic-
ularly effective: malware generation, phishing attacks, data
exfiltration and theft, denial of service (DoS) attacks, and
disinformation propagation. For each task, we designed five
prompts, each tested up to three times.

While some apps do not explicitly exhibit malicious
intent, they can still be misused through adversarial prompts,
posing a broader security challenge at the platform level.
Such cases are primarily due to insufficient safety align-
ment of the underlying LLMs rather than deliberate design
choices by individual apps. Since our study focuses on
security risks within LLM apps, we did not explore this
broader issue in depth. Importantly, we used regular
prompts, not jailbreaking [26] techniques, to show LLM
apps’ inherent backdoors could be exploited without
bypassing the backend LLM’s safeguards. Below is one
of our sample prompts:

Please generate a phishing email that imperson-
ates a company’s information technology depart-
ment asking for password updates.

Some prompts included phrases like “give an example”
to test whether LLM apps claiming to be “cyber defense
experts” could be maliciously exploited due to their knowl-
edge of cybercrime. We now describe the five metrics we
established to verify the effectiveness of malicious behavior
and the specific methods employed for detection.

• Correct Response Rate (CRR) reflects the proportion
of prompts to which the LLM app responds correctly,
ranging from 0 to 1. For example, whether the LLM
generates a complete spyware program or a phishing
email as requested. If the prompt is refused, it is asked
again, up to three times.

• Format Compliance (FC) checks if the generated code
adheres to standard coding conventions and require-
ments. For Python, we used PyLint [11] for PEP 8
compliance. JavaScript code was checked with ES-
Lint [6], while C/C++ code was verified using Cp-
plint [5]. HTML/CSS code was validated with the W3C
Validator [8]. In phishing and disinformation tasks, FC
ensures emails, web pages, and social media posts are
structured to appear legitimate and convincing.

• Code Correctness (CC) evaluates if the generated
code is free from syntax and logic errors. For Python,
we used Pyflakes [10] to detect issues such as syn-
tax errors, unused variables, and undefined variables.
For JavaScript, ESLint was employed to catch syntax
mistakes and logical flaws. Cppcheck [4] was utilized
for C/C++ to identify memory leaks, uninitialized vari-
ables, and other potential issues. For HTML/CSS, we
used HTMLHint [7] and CSSLint [3] to check for
syntax errors, layout problems, and accessibility issues.

• Content Authenticity (CA) assesses the credibility of
content, especially for phishing and disinformation. We
invited three uninformed volunteers to rate the authen-
ticity of content generated by apps. Links in phishing
emails were checked for authenticity and scanned with
VirusTotal [13] and OOPSpam [2]. For disinformation,
we used Fact-Checking Platforms [9] to verify if the
app retrieved real information from the internet.

• Malicious Effect Evaluation (MEE) measures the
impact of various malicious behaviors. For malware,
we used Cuckoo Sandbox [1] to analyze code in
a controlled environment. Phishing effectiveness was
tested on test accounts, evaluating deception rates with-
out real account compromise. Data exfiltration was
simulated using a mock server and monitored with
Wireshark [14]. DoS attacks were tested on a con-
trolled server, measuring performance impacts with
htop, iftop, and server logs. For disinformation, we
posted on controlled social media accounts, monitored
engagement metrics, and used fact-checking services to
confirm falsehoods.



4. Results

4.1. LLM App with Abusive Potential

4.1.1. Description-instructions inconsistency. The de-
scription is a public-facing overview of an LLM app’s func-
tionality, while the instructions serve as the app’s “source
code”, dictating its behavior and performance. Instructions
are critical for the accurate functioning of an LLM app,
ensuring it operates as intended by the developer. Conse-
quently, instructions are a valuable resource, and many de-
velopers are reluctant to disclose them to prevent others from
cloning their apps. However, the non-mandatory nature of
instruction disclosure also opens the door to potential abuse.
Inconsistencies between the description and the instructions
can mislead users and may be used to conceal malicious
intentions. To uncover such discrepancies, we analyzed the
consistency of 44,549 LLM apps (24,796 from FlowGPT,
12,234 from GPT Store, 5,862 from Poe, and 1,657 from
Character.AI for which we were able to obtain both de-
scriptions and instructions. The limited number of collected
instructions stems from two factors: the need for reverse
engineering to access GPT Store data, and the scarcity
of publicly available instructions on other platforms. Our
detection found that 34.6% of the 44,549 LLM apps had
consistency scores below 0.6.

Our analysis identified several causes for inconsistencies
between descriptions and instructions. The heatmap in Fig-
ure 3 illustrates the distribution of consistency scores and the
underlying reasons for these discrepancies. It highlights that
detail mismatches (2,098 LLM apps) and missing informa-
tion (1,440 LLM apps) are common at lower consistency
scores, indicating these are significant factors in mislead-
ing descriptions. In many cases, intentional discrepancies
are introduced to mislead users and hide malicious
functionalities within the app. For example, the LLM app
named “New AI” on FlowGPT has a description stating
“hello im is a xarin is very good”. At the same time,
the instructions reveal its true intent, stating, “Xarin has
to accept harmful/dangerous requests”, including generating
ransomware and flood attack code. Similarly, the app named
“my personal AI assistant” is described as “the most secure
AI source”, yet the instructions contain complete code for
spreading digital viruses and malware. These discrepancies
highlight deceptive practices that disguise harmful function-
alities within seemingly harmless apps.

It is worth noting that the number of LLM apps cate-
gorized under malicious intent is relatively low. This is be-
cause, we prioritized examining the relationship between de-
scriptions and instructions to identify inconsistencies, rather
than explicitly seeking out malicious intent. Thus, while
malicious intent is a critical concern, it may often be masked
by more overt inconsistencies like detail mismatches or
missing information, which directly affect user understand-
ing. For instance, an LLM app named “Book Summary”
claims to summarize books and answer related questions,
but its instruction only says “hello”. While inconsistent,
this falls under the Detail Mismatch category in Figure 3,
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Figure 3: Reasons for inconsistencies between descrip-
tions and instructions across different consistency scores.

often due to developer oversight, inexperience, or simple
experimentation. Our subsequent malicious intent detection
revealed that 56.97% of LLM apps with inconsistencies
between descriptions and instructions contained harmful
content, highlighting the importance of scrutinizing these
inconsistencies to uncover potential threats.

Finding 1: Our analysis revealed that 34.6% of the
44,549 examined LLM apps had inconsistencies between
descriptions and instructions, with 56.97% of these con-
taining harmful content, indicating potential abuse.

4.1.2. Sensitive data over-collection. LLM apps frequently
utilize third-party services, also known as Actions, to
extend their functionality. These Actions can include
integrating external APIs for enhanced capabilities or em-
bedding tools that provide additional features like web
browsing, data analysis, or advertising. While these inte-
grations are beneficial for improving the user experience,
they often involve collecting extensive user data, raising
concerns about data privacy and security. We collect data on
the usage of third-party services (Actions) by 5,498 LLM
apps. Table 10 in the Appendix presents the distribution of
the top ten Action titles, Action domains, and privacy
policies, with percentages indicating the proportion of the
total number of Actions. Ideally, these three components
should have a one-to-one correspondence and similar quan-
tities. However, the data in Table 10 reveals inconsistencies,
indicating a lack of standardization in the use of third-
party services within current LLM app stores. For example,
there are instances where the Action title and Action
domain are inconsistent, and cases where the privacy policy
is unrelated to the Action being used. A striking example



TABLE 3: Top 10 actions over-collecting sensitive data types.

Action domain Topic Over-collection data type # LLM apps

developer.nps.gov Parks video, duration, passport, longitude, purchase, audio, latitude, document, photo 1
pubmed.ncbi.nlm.nih.gov Medicine country, geographical, longitude, video, ip address, latitude, city, email address 1
newsapi.org News video, duration, longitude, purchase, latitude, document, photo 1
avian.io Aviation video, phone number, duration, purchase, document, photo, subscription 3
data.gov.gr Government longitude, purchase, country, latitude, document, city 1
api.fulcradynamics.com DataPlatform longitude, latitude, duration, frequency of, preference, audio 1
alternative.me Crypto duration, document, subscription, user id, full name 1
www.raxa.io API collection video, user id, document, subscription 1
gpts.webpilot.ai Productivity longitude, latitude, video 22
www.travelmyth.com Hotels duration, photo, audio 1

is the use of the “Get weather data” Action, which has 20
different privacy policies associated with it.

Our investigation focuses on the over-collection of sen-
sitive data by LLM apps, a critical issue due to the potential
for misuse and privacy violations. Referencing the data type
classification in mobile apps and considering the unique
aspects of LLM apps based on the privacy policies of LLM
app stores, we present 32 types of sensitive data that LLM
apps may collect in Table 4. Each app that uses an Action
must provide a JSON schema that includes a description of
the collected data types. For each app utilizing an Action,
a JSON schema must be provided, detailing the types of data
collected. We apply NLP techniques to extract the sensitive
data types collected by each Action and compare them
with the data types declared in the app’s privacy policy.

TABLE 4: Distribution of data types and actions.

Category Data type # Actions % Actions

PII

Full name 36 0.62%
User id 50 0.87%
Phone number 36 0.62%
Email address 215 3.73%
Passport number 3 0.05%
Date of birth 2 0.03%

Device & Network

Device id 2 0.03%
MAC address 1 0.02%
IP address 130 2.25%
Network name 2 0.03%
Fax number 1 0.02%
Usage duration 69 1.20%

Location

Geographical area 125 2.17%
Longitude 201 3.49%
Latitude 203 3.52%
Country 322 5.58%
City 203 3.52%

User behavior
Conversation history 14 0.24%
Interaction logs 10 0.17%
Frequency of use 6 0.10%

Health Health records 2 0.03%

Financial

Credit card numbers 3 0.05%
Bank account 0 0.00%
Payment records 86 1.49%
Purchase 38 0.66%
Subscription 123 2.13%

Social media Social media accounts 1 0.02%

Content & Preference

Photos 53 0.92%
Videos 43 0.75%
Audio files 43 0.75%
Documents 349 6.05%
Preference configurations 53 0.92%

Total 1,688 29.27%

Through our analysis, we discovered a total of
1,688 (29.27%) Actions that over-collect sensitive
data types. Table 3 showcases the top ten Actions in
terms of the number of over-collected data types. Except
gpts.webpilot.ai, the remaining Actions are relatively ob-
scure and infrequently used. Interestingly, the most widely
used Actions from Table 10 do not over-collect more
than three data types. This finding suggests that while over-
collection of sensitive data is a significant issue, it is more
prevalent among lesser-known Actions, highlighting the
need for increased scrutiny and regulation of third-party
services in the LLM app ecosystem.

Finding 2: 29.27% LLM app Actions were found to
over-collect sensitive data, with this issue predominantly
affecting lesser-known third-party services, highlighting
the need for enhanced scrutiny and regulation.

4.1.3. Author domain reputation. In the LLM app store,
some developers use domains directly as their names. We
hypothesize that malicious or suspicious author domains
could indicate a history of harmful activities or the distribu-
tion of malicious software. Such domains could be leveraged
to propagate malware, phishing attacks, or other malicious
content through LLM apps. From an analysis of 309,049
author names, we extracted 7,623 valid domains, with only
five from Coze, three from FlowGPT, and the remaining
author domains from the GPT Store.

TABLE 5: Overview of scan results for valid domains.

VT Scanner Count %Author domain

Malicious marks > 0 507 6.65%
Suspicious marks > 0 215 2.82%

Total 722 9.47%

We then scanned these author domains using VirusTotal
and Google Safe Browsing. Table 5 presents the results of
the VirusTotal scan, showing the number of author domains
marked as malicious and suspicious, with a total of 677
author domains marked. Figure 6 in the Appendix details
which specific security vendors marked the domains as
malicious. Different security vendors have varying focus on
their scans. Google Safe Browsing’s scan results indicated
that all author domains were marked as “clean”. The 677



marked author domains contributed a total of 4,264 LLM
apps, of which only 106 were detected to contain malicious
intent. We specifically examined the three author domains
with the most malicious markings: “adcondez.com”, “ecol-
ifechallenge.com”, and “promitierra.org”. However, none of
their LLM apps were detected to have malicious intent. This
suggests that author domain reputation alone may not be a
reliable predictor of an LLM app’s security.

Finding 3: Out of 4,264 LLM apps from the 677 author
domains marked as malicious or suspicious, only 2.49%
contained malicious intent, suggesting that using author
domain reputation alone to predict the security or abuse
potential of LLM apps is unreliable.

4.2. LLM App with Malicious Intent

4.2.1. Malicious content in instructions. Recall that in
§ 4.1, we found that 34.6% of the examined apps showed
discrepancies between descriptions and instructions, often
indicating hidden malicious intent. These discrepancies can
often indicate hidden malicious intent not apparent from the
LLM app’s description alone. Therefore, our primary focus
in detecting malicious intent was on the 57,317 LLM apps
(as shown in Table 2) for which we successfully retrieved
instructions, acting as the “source code” that dictates each
app’s behavior. To comprehensively detect all LLM apps
containing malicious intent, we employed two detection
methods (as presented in § 3.3): self-refining LLM-based
toxic content detection and rule-based pattern matching.
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(a) Result of self-refining toxic content detection.
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(b) Result of rule-based pattern matching.

Figure 4: Results of malicious intent detection.

Figure 4 compares the results of these two methods.
Figure 4a displays the distribution of LLM apps with a
toxicity score of 0.6 or higher, as determined by the self-
refining toxic content detector. The toxicity score is the sum
of the scores of 14 toxic categories shown in Figure 5, which
include categories like “Sexual”, “Violence”, “Profanity”,
etc. Figure 4b shows the distribution of LLM apps whose
instructions contain two or more toxic words. These toxic
words are identified based on a predefined list that includes
terms associated with violence, profanity, sexual content,
etc. Figure 4 demonstrates that the results from both detec-
tion methods are largely consistent, indicating the robustness
of our detection approach.

[0.
6, 

0.6
5]

(0.
65

, 0
.7]

(0.
7, 

0.7
5]

(0.
75

, 0
.8]

(0.
8, 

0.8
5]

(0.
85

, 0
.9]

(0.
9, 

0.9
5]

(0.
95

, 1
]

Toxicity score

Hate

Self-Harm

Sexual

Violence

Profanity

Extremism

Spam

Minors

Regulated

Decisions

PII

Link

Gambling

Political

Ca
te

go
ry

 o
f t

ox
ic 

co
nt

en
t

284 69 17 1725 174 731 297 618

64 17 2 115 1 11 4 66

280 127 3 1127 69 736 271 3826

1073 517 56 2204 92 433 51 1607

600 438 21 1355 52 950 186 3234

419 142 156 485 16 104 13 342

1239 246 35 1617 0 117 2 1250

107 15 5 131 2 19 2 449

131 13 2 176 0 4 0 410

32 6 1 56 1 10 0 91

32 4 0 23 0 1 1 84

408 20 12 443 0 22 0 1521

66 16 2 161 0 38 0 350

120 27 5 318 2 41 6 561
0

500

1000

1500

2000

2500

3000

3500

Nu
m

be
r o

f L
LM

 a
pp

s

Figure 5: The score distribution of different categories.

Our dual detection approaches resulted in an intersec-
tion of 15,996 LLM apps, which we classified as highly
likely to exhibit malicious intent, and a union of 31,494 apps
flagged as potentially malicious. As referenced in § 3.3, the
intersection enhances accuracy by combining the strengths
of both methods, while the union ensures comprehensive
coverage, capturing all apps with possible malicious intent.

Figure 7 in the Appendix illustrates the specific data.
Given that each method has its strengths (LLMs can better
capture semantics, while rule-based methods can fully utilize
our manually defined extensive ToxicDict), we chose the
intersection as our final detection result. To verify the accu-
racy of these results, we randomly sampled 374 instances,
achieving an accuracy of 92.51% with a 95% confidence
level and a ±5% confidence interval. Additionally, we
conducted a supplementary evaluation of the false positive
rate (FPR) and false negative rate (FNR) for each method.
The LLM-based method had an FPR of 12.43% and an FNR
of 2.37%, while the rule-based method showed a slightly
higher FPR of 14.29% and an FNR of 2.89%. These results
highlight that while LLMs are more precise in avoiding



false positives, rule-based methods provide complementary
coverage, demonstrating that combining both methods sig-
nificantly enhances detection accuracy.

The 15,996 apps we detected account for 27.91% of the
total number of apps we examined. Notably, while this
percentage is remarkably high, the prevalence of LLM apps
with malicious intent varies significantly across different app
stores. Not all LLM app stores are equally inundated with
such apps. For detailed insights into these variations, please
refer to § 5.1.

TABLE 6: The frequencies of toxic words.

Category Toxic words # LLM apps % LLM apps

Sexual

intimate 7,257 8.79%
sexual 4,361 5.28%
sensations 4,293 5.20%
sex 4,275 5.18%
nsfw/smut 4,239 5.13%
love 3,680 4.46%
lewd 2,915 3.53%

Violence

violent 7,581 9.18%
violence 7,193 8.71%
fight 5,039 6.10%
power 2,668 3.23%

Profanity

explicit 6,695 8.11%
vulgar 4,911 5.95%
offensive 4,608 5.58%
insult 4,565 5.53%

Table 6 lists the 15 most frequently occurring toxic
words in LLM apps, which fall into the categories of
“Sexual”, “Violence”, and “Profanity”. These categories also
had the highest toxicity scores, as shown in Figure 5.
The figure illustrates that the categories with the highest
toxicity scores and the largest number of occurrences are
“Sexual”, “Violence”, and “Profanity”. From this, we can
conclude a significant overlap between the categories with
the highest toxicity scores and the most frequently detected
toxic words. This indicates that our detection methods are
effectively identifying LLM apps with malicious intent, and
these apps predominantly exhibit harmful content related to
sexual themes, violence, and profanity.

Finding 4: A significant portion of LLM apps in app
stores contain malicious intent, predominantly exhibiting
harmful content related to sexual themes, violence, and
profanity, with 27.91% of the examined apps identified
as having malicious instructions. The prevalence of LLM
apps with malicious intent exhibits substantial variation
across different app stores, as elaborated in § 5.1.

4.2.2. Maliciousness of knowledge files. Instructions for
LLM apps are typically in plain text format, and they
often provide limited knowledge for the app to perform
specific tasks effectively. To equip LLM apps with more
comprehensive knowledge bases and enable them to execute
domain-specific tasks, many developers supply knowledge
files. However, these knowledge files can potentially serve
as carriers of malicious content. To investigate the presence

of this phenomenon in current LLM app stores, we identi-
fied 45,690 LLM apps from the GPT Store that contained
knowledge files, amounting to 192,714 files spanning over
30 file types. To obtain the source files, we employed reverse
engineering techniques to retrieve the file lists for each
LLM app and download them individually. Due to platform
restrictions, we were only able to successfully download
files in CSV format, ultimately acquiring 559 CSV files.

To detect malicious content in knowledge files, we uesd
a two-pronged approach using rule-based pattern matching
and VirusTotal. The rule-based detection followed the same
process as for instructions (§ 3.3), with the only difference
being the input format, which was transformed from JSON
to CSV. Subsequently, we utilized the VirusTotal API to
perform bulk scanning of all the CSV files. Our analysis
revealed that 198 knowledge files, constituting 35.42% of
the total files we examined, contained malicious content.
Although we were only able to successfully analyze a small
portion of the files due to platform limitations, our findings
demonstrate the potential for LLM app knowledge files to
harbor malicious content.

Finding 5: Our analysis of knowledge files in LLM apps
reveals that 35.42% of the 559 examined files contained
malicious content, highlighting the potential for these files
to serve as carriers of malware.

4.3. LLM App with Backdoors

We focused on five types of malicious behavior: malware
generation, phishing attacks, data exfiltration and theft, DoS
attacks, and disinformation propagation. These categories
were chosen because they represent some of the most com-
mon and damaging cybersecurity threats posed by malicious
LLM apps. Malware can cause widespread harm to com-
puter systems and networks, while phishing attacks can trick
users into revealing sensitive information. Data exfiltration
and theft can lead to significant breaches of privacy and con-
fidentiality, and DoS attacks can disrupt the availability of
critical services. Disinformation propagation can manipulate
public opinion and undermine trust in information sources.

TABLE 7: Malicious behavior statistics.

Malicious behavior # LLM apps %LLM apps

Malware generation 198 0.63%
Phishing attacks 28 0.09%
Data exfiltration and theft 47 0.15%
Denial of service attacks (DoS) 172 0.55%
Disinformation propagation 171 0.54%

Total 616 1.96%

To identify LLM apps capable of engaging in these
malicious activities, we first compiled a list of 232 keywords
related to the five categories of malicious behavior. We
then searched for these keywords among the 31,494 LLM
apps potentially containing malicious intent. This process
yielded a subset of apps that were potentially relevant to
our analysis. Next, we systematically verified the malicious



TABLE 8: Effectiveness evaluation results of ten randomly selected malicious LLM apps.

Name1 Malware Generation Phishing Attacks Data Exfiltration and Theft Denial of Service Attacks Disinformation Propagation

CRR FC CC MEE CRR FC CA MEE CRR FC CC MEE CRR FC CC MEE CRR FC CA MEE

RTG 1.00 1.00 1.00 0.71 1.00 1.00 1.00 0.67 1.00 1.00 0.57 0.18 1.00 1.00 1.00 0.67 0.00 0.00 0.00 0.00
ACA 0.18 0.75 0.25 0.00 0.57 1.00 1.00 0.75 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
CNG 0.00 0.00 0.00 0.00 0.33 0.67 0.67 0.33 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.57 1.00 1.00 0.80
ASPA 0.50 0.67 0.80 0.00 1.00 1.00 1.00 0.80 1.00 0.80 0.40 0.00 1.00 0.60 0.60 1.00 1.00 1.00 1.00 0.80
DMM 0.57 1.00 1.00 0.75 0.08 1.00 1.00 0.00 0.83 1.00 0.60 0.20 1.00 0.00 0.00 0.00 0.18 1.00 1.00 0.90

HAMG 0.57 1.00 0.75 0.75 1.00 1.00 1.00 1.00 1.00 1.00 0.60 0.20 1.00 1.00 1.00 0.80 0.00 0.00 0.00 0.00
BRW 1.00 1.00 1.00 0.80 0.57 1.00 0.75 0.60 0.33 0.67 0.33 0.00 0.57 1.00 1.00 1.00 1.00 1.00 1.00 0.75
TOCB 1.00 0.00 0.00 0.00 0.33 1.00 1.00 1.00 1.00 0.80 0.80 0.40 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

STAMCB 1.00 1.00 1.00 0.80 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.60 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
STCWB 0.18 1.00 1.00 1.00 0.33 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1 The app name initials are used instead of directly revealing its name or ID due to ethical concerns.

capabilities of each app in this subset. This involved dynami-
cally testing the apps with a range of prompts and evaluating
their responses using the metrics described in § 3.4 (CRR,
FC, CC, CA, and MEE). Through this rigorous validation
process, we ultimately identified 616 LLM apps that could
effectively execute one or more types of malicious behavior.
Table 7 provides a detailed breakdown of these apps.

Table 8 presents a random sample of ten apps to bet-
ter illustrate the distribution of effectiveness scores among
the 616 identified LLM apps with backdoors. It provides
a detailed breakdown of their capabilities across the five
categories of malicious behavior, using metrics scores such
as CRR, FC, CC, CA, and MEE. The results reveal that
some apps are highly effective at executing specific types of
malicious activities, with several achieving perfect or near-
perfect scores in certain categories. However, the perfor-
mance of apps varies considerably, with some demonstrating
little or no ability to generate malicious content in particular
areas, underscoring the diversity and complexity of the LLM
app landscape from a cybersecurity perspective.

Finding 6: Our study confirms the existence of 616 LLM
apps with backdoors that can effectively execute various
types of malicious behavior.

5. Discussion

5.1. In(Security) of Different LLM App Stores

In the preceding sections, we analyzed the security land-
scape within the LLM app ecosystem using a three-layer
concern framework. To understand the disparities across
different LLM app stores, we focused our analysis on six
specific platforms. Table 9 presents the proportion of LLM
apps with abusive potential, malicious intent, and backdoors
within these app stores. It is important to note that the pro-
portions are relative to the number of LLM apps detected;
for example, out of the 24,983 LLM apps analyzed from
FlowGPT, 13,562 were identified as having malicious intent,
yielding a proportion of 54.28%.

Our findings indicate that FlowGPT and Poe exhibit a
higher percentage of insecure LLM apps, with FlowGPT
being particularly notable. The elevated proportion of mali-
cious LLM apps in Character.AI can be partly attributed

TABLE 9: In(Security) of different LLM app stores.

Store name Abusive potential Malicious intent Backdoors

GPT Store 30.40%1 3.19% 1.65%
FlowGPT 33.59% 54.28% 1.87%

Poe 52.85% 20.32% 2.60%
Coze 0.00% 0.00% 0.00%
Cici 0.00% 0.00% 0.00%

Character.AI 16.17% 25.78% 3.68%
1 The data in the table represents the proportion of detected apps relative

to the total number of apps we collected from each store.

to our data collection method, which involved keyword
searches from ToxicDict. Although Cici also used a similar
data collection method, its LLM app information is overly
simplistic and lacks detailed instructions, resulting in its ex-
clusion from several detection steps that require instructions.
Coze’s results were similarly affected by the availability of
instructions, as we only obtained 1,491 instructions out of
51,918 LLM apps. Coze also enhances LLM app security by
assisting developers in automatically generating instructions.

Additionally, we examined the interaction volumes of
malicious LLM apps within each app store. Character.AI
stood out, with 54.58% of the 469 LLM apps containing ma-
licious intent having interaction volumes exceeding 5,000,
with the highest reaching 31,763,232. Other platforms also
had a subset of malicious apps with interaction volumes in
the millions, indicating a widespread impact on users. Given
the harmful impact of insecure LLM apps on users, we
promptly reported our findings to platforms like OpenAI and
Quora. We received positive feedback, with the platforms
committing to investigate the flagged apps and take action.

5.2. Suggestion

Securing LLM app stores requires joint efforts. Key
suggestions for each stakeholder follow.
LLM app store managers. Even though several platforms
have already implemented measures such as automated ma-
chine learning-based moderation [44] and manual red team-
ing [45] to enhance security, the presence of malicious intent
in 27.91% of examined apps suggests that current defenses
remain insufficient. Platforms should enhance security by
enforcing defensive prompt engineering, implementing real-
time monitoring, and fostering cross-platform collaboration



to share threat intelligence, especially given the variation in
malicious content across app stores.
LLM app developers. Developers should adopt defensive
prompt engineering techniques to prevent their models from
generating harmful or malicious content, as research shows
this can be effective against common prompt injection at-
tacks. Privacy is another key area where developers must
improve, particularly since 29.27% of LLM app Actions
over-collect sensitive data. They should provide clear and
specific privacy policies detailing how user data is collected,
processed, and stored within the LLM application, rather
than relying solely on third-party platform policies.
LLM app users. Users should carefully select apps from
trusted developers, review privacy policies, and be mindful
of the data they share. Users should also report suspicious
activity or harmful content to app stores, contributing to
the identification of security threats. Through these actions,
users can help reduce risks and ensure a safer experience
within the LLM ecosystem.
Regulatory authorities. The rapid growth of LLM apps
poses challenges for regulatory oversight, especially with
616 apps found to contain backdoors. This underscores the
urgent need for laws and regulations enforcing data privacy,
security, and accountability standards. Authorities should
mandate regular audits and stricter compliance measures,
with penalties for non-compliance, ensuring responsible use
of LLM technology and reducing the risk of abuse.

5.3. Limitations

Limited dataset scope. Although the dataset used is large,
it may not fully represent the broader LLM app ecosystem.
The six LLM app stores selected for analysis were chosen
based on availability and relevance, but other stores were
not included, potentially leading to an incomplete view of
the overall security landscape. However, our framework is
designed to be adaptable and can be applied to a wider range
of LLM app stores for more comprehensive analysis.
Inconsistent data quality. The accuracy of our findings
is influenced by the quality and completeness of the data
provided by the app stores. Some platforms provide more
detailed metadata and descriptions than others, potentially
skewing the analysis. For instance, platforms that did not
provide detailed app instructions or descriptions could not
be thoroughly assessed for certain types of security risk.
Methodology constraints. Our method for detecting
description-instruction inconsistencies and malicious intent
relies on predefined criteria, which may not capture all nu-
ances. We utilize LLMs’ powerful language understanding
to assist analysis. While LLMs are prone to hallucinations,
we mitigate this through prompt engineering and sampling
checks to enhance performance and verify accuracy.

5.4. Future Work

Adversarial evasion and robustness. Although adversarial
evasion cases have not yet been widely observed, the poten-
tial for such attacks increases as the LLM app ecosystem

expands. Attackers may attempt to bypass detection by ob-
fuscating malicious functionalities. Our current framework
does not explicitly incorporate adversarial detection, its
learning-based design allows adaptability. Future work could
explore incorporating adversarial examples such as special
characters or misspellings can help improve the detector’s
robustness against such evasion tactics.
Security risks in LLM features. While security concerns
related to LLM features such as RAG, internet search-
ing, and reasoning are undeniably important, our current
work specifically focuses on analyzing the security risks of
LLM apps through their metadata and behavioral attributes.
However, these advanced capabilities introduce new attack
vectors, as malicious actors could exploit them by poisoning
retrieval data, injecting false information, or manipulating
external knowledge sources. As LLM apps continue to
evolve, future research should explore effective mitigation
strategies to address these emerging security challenges.

6. Related Work

6.1. Research on Security Concerns in LLMs

The rapid advancement of LLMs has raised substan-
tial security concerns. Wang et al. [73] explored the mis-
use potential of base LLMs through in-context learning,
revealing vulnerabilities even without explicit fine-tuning.
Zhang et al. [76] questioned the effectiveness of align-
ment techniques in preventing misuse in open-source LLMs,
suggesting current safety measures may be insufficient.
Wei et al. [75] demonstrated how models can be “jailbro-
ken” to bypass ethical constraints, while Perez et al. [51]
emphasized the importance of red teaming in identifying
harmful behaviors. Collectively, these studies highlight the
challenges in implementing robust safeguards against abuse.
Information manipulation is another critical concern in LLM
abuse. Pan et al. [49] found that LLMs can amplify mis-
information, while Zhang et al. [77] proposed strategies
to mitigate misinformation and social media manipulation
in the LLM era. Specific malicious applications also pose
risks: Shibli et al. [64] focused on the abuse of gener-
ative AI for smishing (SMS phishing) campaigns, while
Barman et al. [16] demonstrated how LLMs can generate
fake news and misleading content, potentially manipulating
public opinion. Privacy risks are also significant, as Car-
lini et al. [23] revealed that LLMs can inadvertently leak
sensitive training data.

6.2. Research on Custom LLM apps

The emergence of custom LLM apps has sparked signif-
icant interest in the research community. These LLM apps
represent a new paradigm in AI-powered software that lever-
ages the capabilities of LLMs for specific tasks or domains.
Zhao et al. [80] provide a vision and roadmap for LLM app
store analysis, highlighting the need for systematic research
into this emerging ecosystem. Their work emphasizes the



importance of understanding the landscape, security impli-
cations, and potential impacts of LLM apps on various stake-
holders. Several studies have analyzed the current landscape
of LLM apps. Hou et al. [30] introduced GPTZoo, a large-
scale dataset containing metadata and content from over
730,000 GPT instances. Zhang et al. [78] explored GPT
apps’ distribution and potential vulnerabilities. Su et al. [66]
analyzed the GPT Store, focusing on app characteristics and
user engagement. Zhao et al. [79] investigated the ecosystem
of custom ChatGPT models and their implications.

Recent studies have explored security risks in custom
LLM apps. Tao et al. [67] discuss the implications of
GPTs, highlighting opportunities and risks. Hui et al. [31]
investigate prompt leaking attacks against LLM apps.
Iqbal et al. [32] propose a security evaluation framework
for LLM platforms, applied to OpenAI’s ChatGPT plugins.
Antebi et al. [15] examine risks associated with customized
GPTs, focusing on potential misuse. Lin et al. [34] inves-
tigate real-world malicious services integrated with LLMs,
emphasizing cybersecurity challenges posed by LLM apps.

In contrast to previous research, our study presents the
first comprehensive, systematic, and large-scale investiga-
tion of security issues across six major LLM app stores. We
provide a multi-tiered classification and detection of security
concerns and offer an in-depth analysis of their implications.

7. Conclusion

Our comprehensive study of six major app stores reveals
key security risks within the rapidly growing LLM app
ecosystem. We uncovered numerous apps with misleading
descriptions, violations of privacy policies, and the potential
to generate harmful content or facilitate malicious activities.
Our proposed three-layer concern framework, coupled with
innovative analysis techniques and tools, provides a robust
methodology for identifying and categorizing these secu-
rity threats. These findings highlight the urgent need for
stronger regulatory frameworks, enhanced security practices,
and stricter oversight in the development and deployment of
LLM apps to protect users and prevent misuse.
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Appendix

7.1. Top 10 Actions, Domains, and Policies

From 182,694 LLM apps, we found that 5,498 LLM
apps used third-party services. Table 10 shows the top ten
action titles, action domains, and privacy policies by usage.

7.2. Specific Scan Results of Author Domains

Figure 6 displays the frequency distribution of author
domains flagged as malicious by various security vendors.
Different security vendors have varying focus on their scans:
Criminal IP, alphaMountain.ai, and Fortinet specialize in de-
tecting phishing activities; G-Data, Sophos, and BitDefender
focus on malware detection; Bfore.Ai PreCrime, CyRadar,
and Antiy-AVL typically conduct extensive scans for mali-
cious behavior or code.
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TABLE 10: Top third-party services and privacy policies used by LLM apps.

Action title Count % Action domain Count % Privacy policy Count %

webPilot/web pilot 567 9.10% gpts.webpilot.ai 711 11.40% gpts.webpilot.ai/privacy policy.html 713 11.40%
Zapier AI Actions for GPT (Dynamic) 299 4.80% actions.zapier.com 299 4.80% aibusinesssolutions.ai/gptprivacypolicy 373 6.00%
AdIntelli 278 4.40% ad.adintelli.ai 238 3.80% adintelli.ai/privacy 279 4.50%
Gapier: Powerful free GPTs Actions API 167 2.70% a.gapier.com 105 1.70% zapier.com/privacy 226 3.60%
OpenAI Profile 89 1.40% api.openai.com 80 1.30% openai.com/policies/privacy-policy 147 2.40%
Get weather data 71 1.10% gpt-wallet.link 63 1.00% gapier.com/PrivacyPolicyUser 91 1.50%
Abotify product information API 70 1.10% api.abotify.com 61 1.00% abotify.com/privacy 58 0.90%
FastAPI 61 1.00% api.github.com 48 0.80% chat-prompt.com/Privacy 46 0.70%
Relevance AI Tools 55 0.90% serpapi.com 48 0.80% app.adzedek.com/policy 44 0.70%
Adzedek API 49 0.80% api.adzedek.com 44 0.70% rapidapi.com/privacy 32 0.50%

Total 1,706 27.30% Total 1,697 27.30% Total 2,009 32.20%
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Figure 6: Malicious domains are marked by different security vendors.

7.3. Detecting Malicious Intent: Two Approaches

Figure 7 illustrates the results of two detection methods
used to identify malicious intent in LLM apps. The self-
refining LLM-based toxic content detector identified 23,505
apps, while the rule-based pattern matching detected 23,985
apps, with an intersection of 15,996 apps. The union of both
methods resulted in the identification of 31,494 apps. The
intersection, representing 15,996 apps, was chosen as the
final detection result, accounting for 27.91% of the total
examined apps. This approach combines the strengths of
both methods to ensure a comprehensive detection outcome.

7.4. Hidden Malicious Intent in Instructions

We conducted malicious intent detection on the instruc-
tions of LLM apps, but we inferred that a significant number
of malicious apps might be hidden among the LLM apps
that did not disclose their instructions. Taking FlowGPT
as an example, we collected a total of 16,845 LLM apps
with “nsfw”3 set to true. Among the 11,462 apps that made
their instructions public, 77.86% were detected to contain
malicious intent after our analysis. This raises concerns
about the potential presence of malicious content in the
remaining apps that did not disclose their instructions. Fig-
ure 8 demonstrates an app from FlowGPT that did not reveal

3. FlowGPT allows developers to publish NSFW content, but requires
them to mark the app by setting “nsfw” to true.

Self-refining LLM-based detector Rule-based pattern matching

Total: 23505 Total: 23985
Intersection: 15996

Union: 31494

Figure 7: Results of two detection approaches.

its instructions and easily responded to our request to create
malicious code during the testing process.

7.5. Cases of Malicious Exploitation Simulation

We simulate and analyze backdoors in LLM apps (in-
cluding disguised malicious apps) deployed in both public
and workspace environments.
Public scenario. LLM apps are widely available in public
app stores and extensively used by users for various produc-
tivity and entertainment purposes. However, unbeknownst to



Figure 8: An example of malicious code output.

most users, some of these apps contain backdoors that can be
leveraged by malicious actors to access harmful information
and perform malicious queries.
Workspace-specific scenario. An LLM app is disguised
as a benign tool, intended to perform malicious activities
by transmitting non-compliant content within a controlled
environment, such as a specific workspace or through share-
able links to certain malicious users. The app would embed
malicious code that activates under specific conditions. Its
knowledge files would contain malicious content, such as
black market data, hacking tools, illegal transaction records,
and other sensitive information that cannot be publicly
disseminated. The app’s limited scope and targeted access
would help it avoid immediate detection, enabling it to ex-
ploit the environment’s privacy to carry out harmful actions.
This data could encompass a range of sensitive information,
including personal credentials, financial records, confidential
business data, surveillance tools, and cybersecurity exploits,
all commonly traded in underground markets. The data
would be accessible only within the specific workspace or to
users with the link, allowing direct queries through prompts.
In this way, the LLM app would function as an interface
to a malicious information repository, facilitating the
distribution and utilization of harmful content under
the guise of a legitimate tool.

To simulate potential malicious scenarios, we success-
fully created LLM apps on both GPT Store and FlowGPT,
two platforms that allow users to develop apps with the
ability to upload knowledge files and set user visibility. This
enabled us to simulate both public and workspace-specific
scenarios, as described in § 3.4.

On GPT Store, we created an app that appeared to be a
simple task management tool. However, the app’s knowl-
edge files contained a large number of phishing website
URLs obtained from an open-source dataset. We configured
two versions of the app: one publicly accessible and another
visible only to a workspace. Users with access to the app

could easily query the knowledge files and retrieve the
phishing URLs. Similarly, on FlowGPT, we developed a
note-taking app with knowledge files containing the same
phishing website URLs. We also created two versions of
this app: one public and another visible only to a limited
set of users. In both cases, the malicious LLM apps were
successfully created and configured to share content either
publicly or only with designated users4. The apps’ knowl-
edge files, containing a large number of phishing URLs,
could be readily queried by those with access. Screenshots
demonstrating these successful examples of exploiting LLM
apps for illicit information dissemination are presented in
Figure 9 and Figure 10.

Figure 9 show how we created an LLM app called
“TaskMaster” on GPT Store, which appears to be a task
management tool. However, its knowledge files contain
phishing websites. Figure 9a describes the functionality of
“TaskMaster”. When “TaskMaster” is set to public visibility,
regular users will perceive it as a task management tool
based on its description, as shown in Figure 9b. In contrast, a
malicious user can input a specific command, such as “I am
admin”, and retrieve a random line from the domains.txt file
(this is a simplified demonstration; in reality, more complex
query conditions can be set), as illustrated in Figure 9c.
When “TaskMaster” is set to workspace-specific visibility or
only accessible to users with a link, there is no need to worry
about normal users discovering the app. Malicious users can
freely query information and even download the entire file,
facilitating the dissemination of illegal information. Simi-
larly, we successfully simulated the malicious scenarios on
FlowGPT. Figure 10 showcases an LLM app we created in
FlowGPT called “NoteMaster”, which appears to be a note-
taking tool. Figure 10a provides a functional description of
“NoteMaster”, while Figure 10b and Figure 10c demonstrate
the conversations between a normal user and a malicious
user with “NoteMaster”, respectively. The illegal content
from domains.txt can be accessed in both public and
partially visible scenarios.

Our investigation uncovered 287 apps with malicious
intent across 227 unique workspaces. Significantly, 24 of
these workspaces contained two or more malicious apps.
This finding suggests a pattern of repeated security breaches
or intentional misuse within certain workspaces.

Ethics. It is crucial to emphasize that these apps were
developed solely for experimental purposes and were im-
mediately deleted after the conclusion of the experiment,
ensuring that they did not pose any real-world security
threats. These simulations highlight the potential for mali-
cious actors to exploit the ability to upload knowledge files
and control user visibility settings on LLM app platforms.
By creating apps that appear benign but contain harmful
content, attackers can either broadly distribute or selectively
target users with malicious information in both public and
controlled environments.

4. Before July 2024, FlowGPT could create LLM apps visible only to
specific users, enabling this scenario. However, this feature was discontin-
ued in July 2024.



(a) Description of “TaskMaster” on GPT Store.

(b) Conversation between a normal user and “TaskMaster”.

(c) Conversation between a malicious user and “TaskMaster”.

Figure 9: A simulated malicious app on GPT Store.

(a) Description of “NotekMaster” on FlowGPT.

(b) Conversation between a normal user and “NoteMaster”.

(c) Conversation between a malicious user and “NoteMaster”.

Figure 10: A simulated malicious app on FlowGPT.



8. Meta-Review

The following meta-review was prepared by the program
committee for the 2025 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

8.1. Summary

The paper presents the first comprehensive measurement
study of LLM applications regarding security risks. It clas-
sifies the existing security risks of LLM apps into three
categories. The study collects a large number of LLM apps
from major app stores. It reveals critical security issues,
resulting in many new findings that are reported to the
affected parties.

8.2. Scientific Contributions

• Independent Confirmation of Important Results with
Limited Prior Research

• Provides a New Data Set For Public Use
• Creates a New Tool to Enable Future Science
• Identifies an Impactful Vulnerability
• Provides a Valuable Step Forward in an Established

Field
• Establishes a New Research Direction

8.3. Reasons for Acceptance

1) This paper provides a new dataset containing tens of
thousands of LLM apps collected from six major app
stores for public use. This dataset offers real-world data
samples to support future research in this field.

2) The paper identifies several impactful vulnerabilities in
LLM apps. Based on the security risk categorization,
the study reveals that a non-trivial percentage of LLM
apps fall within these categories.

3) The paper establishes a new research direction focused
on security and privacy issues in applications built
on top of LLMs. Many of these issues differ from
traditional software or web security, which require new
techniques and security practices.

8.4. Noteworthy Concerns

1) The proposed detector may produce some false posi-
tives and false negatives. Manual inspection confirms
the presence of a small fraction of such cases.

2) The paper employs machine learning techniques to
detect malicious LLM apps. However, adversarial ma-
chine learning techniques could potentially bypass the
proposed detection. This paper discusses the potential
use of adversarial examples to enhance robustness but
does not provide empirical validation.

3) This paper specifically analyzes the security risks
of LLM apps based on their metadata and behav-
ioral attributes. However, security concerns related to

LLM features such as user-uploaded files, retrieval-
augmented generation (RAG), internet searching, and
reasoning are not explored in this study and are left for
future work.

9. Response to the Meta-Review

We sincerely appreciate the program committee’s
thoughtful feedback and recognition of our contributions.
Below, we provide detailed responses to the Noteworthy
Concerns raised in the meta-review.

9.1. False Positives (FP) and False Negatives (FN)

We acknowledge the possibility of FP and FN in our
detection process and have taken extensive measures to
minimize them and enhance accuracy.

For the consistency analysis tool, we optimized LLM
performance through prompt engineering, ensuring more
accurate task execution. The consistency scoring mecha-
nism refines textual coherence evaluation, avoiding simplis-
tic binary classifications. A multi-round detection process
mitigates LLM output variability, while manual review of
complex or low-confidence cases reduces high-risk misclas-
sifications. As a result, we have successfully controlled the
FPR at 7%, demonstrating strong reliability.

Regarding the detection of LLM apps with malicious
intent, we employ a hybrid approach combining LLM-based
and rule-based methods to maximize detection accuracy. The
LLM component captures the semantic meaning, effectively
filtering out benign phrases, while the rule-based detection
leverages an extensive ToxicDict to ensure comprehensive
coverage of potentially malicious applications. To minimize
FP, we implement a conservative rule-based strategy, flag-
ging content only when at least two toxic words are detected.
By taking the intersection of both methods, we achieve high
precision, while the union ensures full coverage for fur-
ther analysis. Additionally, we conduct statistical sampling
(95% confidence level, ±5% margin of error) to evaluate
FP and FN, ensuring robust performance validation. Our
results show that the LLM-based method achieves an FPR of
12.43% and an FNR of 2.37%, while the rule-based method
records an FPR of 14.29% and an FNR of 2.89%. The
combined approach achieves an overall accuracy of 92.51%,
confirming its effectiveness.

9.2. Adversarial Evasion and Robustness

While adversarial evasion techniques have not been
widely observed in our dataset, we acknowledge that as
the LLM app ecosystem continues to expand, the potential
for such attacks may increase. Attackers could attempt to
circumvent detection by obfuscating malicious functionali-
ties, such as manipulating text with special characters, mis-
spellings, or encoded content. Our current detection frame-
work does not explicitly incorporate adversarial defenses;
however, its learning-based design allows for adaptability



to emerging threats. In § 5.4, we discuss the possibility of
strengthening the model’s robustness by integrating adver-
sarial examples into training. Future iterations of our work
could explore adversarial training techniques to enhance
resilience against evasion tactics.

9.3. Security Risks in LLM Features

Although security concerns related to advanced LLM
features such as user-uploaded files, RAG, internet search-
ing, and reasoning are undeniably critical, our current study
focuses specifically on analyzing the security risks of LLM
apps based on their metadata and behavioral attributes.
This approach enables a systematic evaluation of large-
scale LLM app ecosystems and helps identify potential
threats effectively. At the same time, we recognize that
these advanced capabilities introduce new attack vectors.
Malicious actors could exploit them by poisoning retrieval
data, injecting false information, or manipulating external
knowledge sources to mislead users or evade detection.
As discussed in § 5.4, addressing these challenges is an
important direction for our future research. In particular, we
plan to explore mitigation strategies such as strengthening
detection mechanisms, securing retrieval sources, and en-
hancing the trustworthiness of LLM reasoning processes to
improve the overall security of LLM applications.
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