Model Context Protocol (MCP): Landscape, Security Threats, and
Future Research Directions

Xinyi Hou
xinyihou@hust.edu.cn
Huazhong University of Science and Technology
Wuhan, China

Shenao Wang
shenaowang@hust.edu.cn
Huazhong University of Science and Technology
Wuhan, China

ABSTRACT

The Model Context Protocol (MCP) is a standardized interface
designed to enable seamless interaction between AI models and
external tools and resources, breaking down data silos and facili-
tating interoperability across diverse systems. This paper provides
a comprehensive overview of MCP, focusing on its core compo-
nents, workflow, and the lifecycle of MCP servers, which consists of
three key phases: creation, operation, and update. We analyze the
security and privacy risks associated with each phase and propose
strategies to mitigate potential threats. The paper also examines the
current MCP landscape, including its adoption by industry leaders
and various use cases, as well as the tools and platforms supporting
its integration. We explore future directions for MCP, highlighting
the challenges and opportunities that will influence its adoption
and evolution within the broader Al ecosystem. Finally, we offer
recommendations for MCP stakeholders to ensure its secure and
sustainable development as the Al landscape continues to evolve.

1 INTRODUCTION

In recent years, the vision of autonomous Al agents capable of
interacting with a wide range of tools and data sources has gained
significant momentum. This progress accelerated in 2023 with the
introduction of function calling by OpenAl, which allowed lan-
guage models to invoke external APIs in a structured way [36]. This
advancement expanded the capabilities of LLMs, enabling them to
retrieve real-time data, perform computations, and interact with ex-
ternal systems. As function calling gained adoption, an ecosystem
formed around it. OpenAl introduced the ChatGPT plugin [35],
allowing developers to build callable tools for ChatGPT. LLM app
stores such as Coze [6] and Yuangi [46] have launched their plugin
stores, supporting tools specifically designed for their platforms.
Frameworks like LangChain [23] and Llamalndex [26] provided
standardized tool interfaces, making it easier to integrate LLMs
with external services. Other Al providers, including Anthropic,
Google, and Meta, introduced similar mechanisms, further driving
adoption. Despite these advancements, integrating tools remains
fragmented. Developers must manually define interfaces, man-
age authentication, and handle execution logic for each service.
Function calling mechanisms vary across platforms, requiring re-
dundant implementations. Additionally, current approaches rely

“Haoyu Wang is the corresponding author (haoyuwang@hust.edu.cn).

Yanjie Zhao
yanjie_zhao@hust.edu.cn
Huazhong University of Science and Technology
Wuhan, China

Haoyu Wang’
haoyuwang@hust.edu.cn
Huazhong University of Science and Technology
Wuhan, China

on predefined workflows, limiting AI agents’ flexibility in
dynamically discovering and orchestrating tools.

In late 2024, Anthropic introduced the Model Context Protocol
(MCP)[4], a general-purpose protocol standardizing Al-tool inter-
actions. Inspired by the Language Server Protocol (LSP) [20], MCP
provides a flexible framework for AI applications to communicate
with external tools dynamically. Instead of relying on predefined
tool mappings, MCP allows Al agents to autonomously discover,
select, and orchestrate tools based on task context. It also supports
human-in-the-loop mechanisms, enabling users to inject data or ap-
prove actions as needed. By unifying interfaces, MCP simplifies the
development of Al applications and improves their flexibility in han-
dling complex workflows. Since its release, MCP has rapidly grown
from a niche protocol to a key foundation for Al-native application
development. A thriving ecosystem has emerged, with thousands
of community-driven MCP servers enabling model access to sys-
tems like GitHub [40], Slack [41], and even 3D design tools like
Blender [1]. Tools like Cursor [12] and Claude Desktop [3] demon-
strate how MCP clients can extend their capabilities by installing
new servers, turning developer tools, productivity platforms, and
creative environments alike into multi-modal AI agents.

Despite MCP rapid adoption, the MCP ecosystem remains in
its early stages, with several key areas such as security, tool dis-
coverability, and remote deployment still lacking comprehensive
solutions. These issues present untapped opportunities for further
research and development. Although MCP is widely recognized for
its potential in the industry, it has not yet been extensively analyzed
in academic research. This gap in research motivates this paper,
which provides the first analysis of the MCP ecosystem, examin-
ing its architecture and workflow, defining the lifecycle of MCP
servers, and identifying potential security risks at each stage, such
as installer spoofing and tool name conflict. Through this study,
we present a thorough exploration of MCP’s current landscape
and offer a forward-looking vision that highlights key implications,
outlines future research directions, and addresses the challenges
that must be overcome to ensure its sustainable growth.

Our contributions are as follows:

(1) We provide the first analysis of the MCP ecosystem, detailing
its architecture, components, and workflow.

(2) We identify the key components of MCP servers and define
their lifecycle, encompassing the stages of creation, opera-
tion, and update. We also highlight potential security risks

Conference’17, July 2017, Washington, DC, USA

associated with each phase, offering insights into safeguard-
ing Al-to-tool interactions.

(3) We examine the current MCP ecosystem landscape, ana-
lyzing the adoption, diversity, and use cases across various
industries and platforms.

(4) We discuss the implications of MCP’s rapid adoption, iden-
tifying key challenges for stakeholders, and outline future
research directions on security, scalability, and governance
to ensure its sustainable growth.

The remainder of this paper is structured as follows: § 2 compares
tool invocation with and without MCP, highlighting the motivation
for this study. § 3 outlines the architecture of MCP, detailing the
roles of the MCP host, client, and server, as well as the lifecycle of
the MCP server. § 4 examines the current MCP landscape, focusing
on key industry players and adoption trends. § 5 analyzes security
and privacy risks across the MCP server lifecycle and proposes
mitigation strategies. § 6 explores implications, future challenges,
and recommendations to enhance MCP’s scalability and security in
dynamic Al environments. Finally, § 7 concludes the whole paper.

2 BACKGROUND AND MOTIVATION
2.1 Al Tooling

Before the introduction of MCP, AI applications relied on vari-
ous methods, such as manual API wiring, plugin-based interfaces,
and agent frameworks, to interact with external tools. As shown
in Figure 1, these approaches required integrating each external
service with a specific API, leading to increased complexity and lim-
ited scalability. MCP addresses these challenges by providing
a standardized protocol that enables seamless and flexible
interaction with multiple tools.

Without MCP Al Application |

Specific API Specific API
Specific|API
S s

[@Web Services] E.'?g Database] [Local Files]

External Tools and Resources

VS.

With MCP | Al Application (MCP Client)

I Model Context Protocol

MCP Server

Specific| API

Specific API Specific API

[@Web Services] :;E Database] [Local Files]

External Tools and Resources

Figure 1: Tool invocation with and without MCP.

X Hou, Y Zhao, S Wang, and H Wang

2.1.1 Manual API Wiring. In traditional implementations, develop-
ers had to establish manual API connections for each tool or service
that an AI application interacted with. This process required cus-
tom authentication, data transformation, and error handling
for every integration. As the number of APIs increased, the main-
tenance burden became significant, often leading to tightly coupled
and fragile systems that were difficult to scale or modify. MCP
eliminates this complexity by offering a unified interface, allowing
Al models to connect with multiple tools dynamically without the
need for custom API wiring.

2.1.2 Standardized Plugin Interfaces. To reduce the complexity of
manual wiring, plugin-based interfaces such as OpenAI ChatGPT
Plugins, introduced in November 2023 [35], allowed AI models to
connect with external tools through standardized API schemas like
OpenAPI For example, in the OpenAl Plugin ecosystem, plugins
like Zapier allowed models to perform predefined actions, such as
sending emails or updating CRM records. However, these interac-
tions were often one-directional and could not maintain state
or coordinate multiple steps in a task. New LLM app stores [53]
such as ByteDance Coze [6] and Tencent Yuangi [46] have also
emerged, offering a plugin store for web services. While these
platforms expanded available tool options, they created isolated
ecosystems where plugins are platform-specific, limiting cross-
platform compatibility and requiring duplicate maintenance efforts.
MCP stands out by being open-source and platform-agnostic, en-
abling Al applications to engage in rich two-way interactions with
external tools, facilitating complex workflows.

2.1.3 Al Agent Tool Integration. The emergence of Al agent frame-
works like LangChain [23] and similar tool orchestration frame-
works provided a structured way for models to invoke external
tools through predefined interfaces, improving automation and
adaptability [50]. However, integrating and maintaining these tools
remained largely manual, requiring custom implementations and
increasing complexity as the number of tools grew. MCP simplifies
this process by offering a standardized protocol that enables
Al agents to seamlessly invoke, interact with, and chain mul-
tiple tools through a unified interface. This reduces manual
configuration and enhances task flexibility, allowing agents to per-
form complex operations without extensive custom integration.

2.1.4 Retrieval-Augmented Generation (RAG) and Vector Database.
Contextual information retrieval methods, such as RAG, leverage
vector-based search to retrieve relevant knowledge from databases
or knowledge bases, enabling models to supplement responses with
up-to-date information [11, 16]. While this approach addressed the
problem of knowledge cutoff and improved model accuracy, it was
limited to passive retrieval of information. It did not inherently
allow models to perform active operations, such as modifying data
or triggering workflows. For example, a RAG-based system could
retrieve relevant sections from a product documentation database
to assist a customer support AL However, if the Al needed to update
customer records or escalate an issue to human support, it could
not take action beyond providing textual responses. MCP extends
beyond passive information retrieval by enabling AI models to
interact with external data sources and tools actively, facilitating
both retrieval and action in a unified workflow.

Model Context Protocol (MCP): Landscape, Security Threats, and Future Research Directions

Conference’17, July 2017, Washington, DC, USA

MCP Workflow |
1
1
MCP Host Transfer Layer MCP Server :
Prompt: . Data !
“Can you please MCP Client | |___(D Initial Request ___,| {5 G @ *Sourcel |
fetch the latest Chat Apps || __(@ Initial Response __| =0, % |
stock price of - PDS |4) !
AAPL and notify : " Al Agent ___® Notification _____ M :
me via email?” / 1
: IDE | ‘ USQIJ[C - . : -
1 TT = .. T — -
: Orchestration ~ - ----- - ’ ‘ Capabilities :
PUEEE ¢ :
' ' J : Q Y\ — |
~_ <« - | SAMPLE DI:I 1
|) —4 % ﬁ 9)
. 1
User : Notification Sampling Tools Resources Prompts :

Figure 2: The workflow of MCP.

2.2 Motivation

MCP has rapidly gained traction in the Al community due to its
ability to standardize how Al models interact with external tools,
fetch data, and execute operations. By addressing the limitations of
manual API wiring, plugin interfaces, and agent frameworks, MCP
has the potential to redefine Al-to-tool interactions and enable
more autonomous and intelligent agent workflows. Despite its
growing adoption and promising potential, MCP is still in its early
stages, with an evolving ecosystem that remains incomplete. Many
key aspects, such as security and tool discoverability, are yet to
be fully addressed, leaving ample room for future research and
improvement. Moreover, while MCP has gained rapid adoption in
the industry, the academic community has yet to explore it.
Motivated by this gap, this paper is the first to analyze the
current MCP landscape, examine its emerging ecosystem,
and identify potential security risks. Additionally, we outline a
vision for MCP’s future development and highlight the key chal-
lenges that must be addressed to support its long-term success.

3 MCP ARCHITECTURE

3.1 Core Components

The MCP architecture is composed of three core components: MCP
host, MCP client, and MCP server. These components collaborate
to facilitate seamless communication between Al applications, ex-
ternal tools, and data sources, ensuring that operations are secure
and properly managed. As shown in Figure 2, in a typical work-
flow, the user sends a prompt to the MCP client, which analyzes
the intent, selects the appropriate tools via the MCP server,
and invokes external APIs to retrieve and process the required
information before notifying the user of the results.

3.1.1 MCP Host. The MCP host is an Al application that provides
the environment for executing Al-based tasks while running the
MCP client. It integrates interactive tools and data to enable smooth
communication with external services. Examples include Claude
Desktop for Al-assisted content creation, Cursor, an Al-powered
IDE for code completion and software development, and Al agents

that function as autonomous systems for executing complex tasks.
The MCP host hosts the MCP client and ensures communication
with external MCP servers.

3.1.2 MCP Client. The MCP client acts as an intermediary within
the host environment, managing communication between the MCP
host and one or more MCP servers. It initiates requests to MCP
servers, queries available functions, and retrieves responses that
describe the server’s capabilities. This ensures seamless interaction
between the host and external tools. In addition to managing re-
quests and responses, the MCP client processes notifications from
MCP servers, providing real-time updates about task progress and
system status. It also performs sampling to gather data on tool us-
age and performance, enabling optimization and informed decision-
making. The MCP client communicates through the transport layer
with MCP servers, facilitating secure, reliable data exchange and
smooth interaction between the host and external resources.

3.1.3 MCP Server. The MCP server enables the MCP host and
client to access external systems and execute operations, offering
three core capabilities: tools, resources, and prompts.

e Tools: Enabling external operations. Tools allow the MCP
server to invoke external services and APIs to execute operations
on behalf of Al models. When the client requests an operation,
the MCP server identifies the appropriate tool, interacts with
the service, and returns the result. For instance, if an Al model
requires real-time weather data or sentiment analysis, the MCP
server connects to the relevant API, retrieves the data, and de-
livers it to the host. Unlike traditional function calling, which
requires multiple steps and separates invocation from execu-
tion, Tools of MCP servers streamline this process by allowing
the model to autonomously select and invoke the appropriate
tool based on context. Once configured, these tools follow a
standardized supply-and-consume model, making them modu-
lar, reusable, and easily accessible to other applications, thereby
enhancing system efficiency and flexibility.

e Resources: Exposing data to AI models. Resources provide
access to structured and unstructured datasets that the MCP

Conference’17, July 2017, Washington, DC, USA

server can expose to Al models. These datasets may come from
local storage, databases, or cloud platforms. When an Al model
requests specific data, the MCP server retrieves and processes the
relevant information, enabling the model to make data-driven
decisions. For example, a recommendation system may access
customer interaction logs, or a document summarization task
may query a text repository.

e Prompts: Reusable templates for workflow optimization.
Prompts are predefined templates and workflows that the MCP
server generates and maintains to optimize Al responses and
streamline repetitive tasks. They ensure consistency in responses
and improve task execution efficiency. For instance, a customer
support chatbot may use prompt templates to provide uniform
and accurate responses, while an annotation task may rely on
predefined prompts to maintain consistency in data labeling.

3.2 Transport Layer and Communication

The transport layer ensures secure, bidirectional communication,
allowing for real-time interaction and efficient data exchange be-
tween the host environment and external systems. The transport
layer manages the transmission of initial requests from the client,
the delivery of server responses detailing available capabilities,
and the exchange of notifications that keep the client informed
of ongoing updates. Communication between the MCP client and
the MCP server follows a structured process, beginning with an
initial request from the client to query the server’s functionalities.
Upon receiving the request, the server responds with an initial
response that lists the available tools, resources, and prompts that
the client can leverage. Once the connection is established, the sys-
tem maintains a continuous exchange of notifications to ensure
that changes in server status or updates are communicated back to
the client in real time. This structured communication ensures high-
performance interactions and keeps Al models synchronized with
external resources, enhancing the effectiveness of Al applications.

3.3 MCP Server Lifecycle

The MCP server lifecycle consists of three key phases: creation,
operation, and update. Each phase defines critical activities that
ensure the secure and efficient functioning of the MCP server, en-
abling seamless interaction between Al models and external tools,
resources, and prompts.

3.3.1 MCP Server Components. The MCP server is responsible for
managing external tools, data sources, and workflows, providing
Al models with the necessary resources to perform tasks efficiently
and securely. It comprises several key components that ensure
smooth and effective operations. Metadata includes essential infor-
mation about the server, such as its name, version, and description,
allowing clients to identify and interact with the appropriate server.
Configuration involves the source code, configuration files, and
manifest, which define the server’s operational parameters, envi-
ronment settings, and security policies. Tool list stores a catalog of
available tools, detailing their functionalities, input-output formats,
and access permissions, ensuring proper tool management and
security. Resources list governs access to external data sources,
including web APIs, databases, and local files, specifying allowed
endpoints and their associated permissions. Finally, Prompts and

X Hou, Y Zhao, S Wang, and H Wang

[Code Integrity Verification — Backdoor]

Source Code

Server Components } MCP Server Lifecycle
Metadata Creation
0 Name. . ' i [Server Registration — Name Collision]
Description b
Version P N
o [Installer Deployment — Installer Spoofing]
Configuration P

—o : :
O— Config Files |f‘> !

Manifest

Operation
Tool List [Tool Execution — Tool Name Conflict]
Description
Permissions

[Sandbox Mechanism — Sandbox Escape]

Resources List

2

Update

@ Endpoints

Permissions

[Authorization — Privilege Persistence]

Prompts) -
[Version Control — Vulnerable Versions]
Templates
g Workfl A —
W= orktlows [Old Version — Configuration Drift]
Metadata

i Tool Name

<j [Slash Command — Command Overlap]

h
:
:
:
:
:
:
:
:
:
:
:
:
:
:
P
;
:
:
:
:
:
:
:
:
:

Data Sources '
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
;

;

Figure 3: MCP servers components and lifecycle.

Templates include pre-configured task templates and workflows
that enhance the efficiency of Al models in executing complex oper-
ations. Together, these components enable MCP servers to provide
seamless tool integration, data retrieval, and task orchestration for
Al-powered applications.

3.3.2 Creation Phase. The creation phase is the initial stage of the
MCP server lifecycle, where the server is registered, configured, and
prepared for operation. This phase involves three key steps. Server
registration assigns a unique name and identity to the MCP server,
allowing clients to discover and connect to the appropriate server
instance. Installer deployment involves installing the MCP server
and its associated components, ensuring that the correct configura-
tion files, source code, and manifests are in place. Code integrity
verification validates the integrity of the server’s codebase to pre-
vent unauthorized modifications or tampering before the server
becomes operational. Successful completion of the creation phase
ensures that the MCP server is ready to handle requests and interact
securely with external tools and data sources.

3.3.3 Operation Phase. The operation phase is where the MCP
server actively processes requests, executes tool invocations, and
facilitates seamless interaction between Al applications and exter-
nal resources. Tool execution allows the MCP server to invoke the
appropriate tools based on the Al application’s requests, ensuring
that the selected tools perform their intended operations. Slash
command handling enables the server to interpret and execute
multiple commands, including those issued through user inter-
faces or Al agents, while managing potential command overlaps
to prevent conflicts. Sandbox mechanism enforcement ensures
that the execution environment is isolated and secure, preventing

Model Context Protocol (MCP): Landscape, Security Threats, and Future Research Directions

Conference’17, July 2017, Washington, DC, USA

Table 1: Overview of MCP ecosystem adoption.

Category Company/Product

Key Features or Use Cases

Anthropic (Claude) [3]
AI Models and Frameworks OpenAlI [37]

Baidu Maps [28]

Blender MCP [30]

Full MCP support in the desktop version, enabling interaction with external tools.
MCP support in Agent SDK and API for seamless integration.

API integration using MCP to access geolocation services.

Enables Blender and Unity 3D model generation via natural language commands.

Replit [42]

Al-assisted development environment with MCP tool integration.

Microsoft Copilot Studio [45] Extends Copilot Studio with MCP-based tool integration.

Developer Tools Sourcegraph Cody [10]

Implements MCP through OpenCTX for resource integration.

Codeium [9] Adds MCP support for coding assistants to facilitate cross-system tasks.
Cursor [12] MCP tool integration in Cursor Composer for seamless code execution.
Cline [7] VS Code coding agent that manages MCP tools and servers.

Zed [51] Provides slash commands and tool integration based on MCP.

JetBrains [22]
Windsurf Editor [13]
TheiaAl/TheialDE [48]
Emacs MCP [29]
OpenSumi [38]

IDEs/Editors

Integrates MCP for IDE-based AI tooling.

Al-assisted IDE with MCP tool interaction.

Enables MCP server interaction for Al-powered tools.

Enhances Al functionality in Emacs by supporting MCP tool invocation.
Supports MCP tools in IDEs and enables seamless Al tool integration.

Cloudflare [3]
Cloud Platforms and Services Block (Square) [43]
Stripe [44]

Provides remote MCP server hosting and OAuth integration.
Uses MCP to enhance data processing efficiency for financial platforms.
Exposes payment APIs via MCP for seamless Al integration.

Apify MCP Tester [47]
Web Automation and Data LibreChat [25]
Goose [19]

Connects to any MCP server using SSE for API testing.
Extends the current tool ecosystem through MCP integration.
Allows building Al agents with integrated MCP server functionality.

unauthorized access and mitigating potential risks. Throughout the
operation phase, the MCP server maintains a stable and controlled
environment, enabling reliable and secure task execution.

3.3.4 Update Phase. The update phase ensures that the MCP server
remains secure, up-to-date, and capable of adapting to evolving
requirements. This phase includes three key tasks. Authorization
management verifies that post-update access permissions remain
valid, preventing unauthorized use of server resources after up-
dates. Version control maintains consistency between different
server versions, ensuring that new updates do not introduce vul-
nerabilities or conflicts. Old version management deactivates
or removes outdated versions to prevent attackers from exploiting
known vulnerabilities in previous versions.

Understanding the MCP server lifecycle is essential for iden-
tifying potential vulnerabilities and designing effective security
measures. Each phase introduces distinct challenges that must be
carefully addressed to maintain the security, efficiency, and adapt-
ability of the MCP server in dynamic Al environments.

4 CURRENT LANDSCAPE

4.1 Ecosystem Overview

4.1.1 Key Adopters. Table 1 demonstrates how MCP has gained
significant traction across diverse sectors, signaling its growing
importance in enabling seamless Al-to-tool interactions. Notably,
leading AI companies such as Anthropic [3] and OpenAl [37] have
integrated MCP to enhance agent capabilities and improve multi-
step task execution. This adoption by industry pioneers has set a
precedent, encouraging other major players to follow suit. Chinese
tech giants like Baidu [28] have also incorporated MCP into their

ecosystems, highlighting the protocol’s potential to standardize Al
workflows across global markets. Developer tools and IDEs, includ-
ing Replit [42], Microsoft Copilot Studio [45], JetBrains [22], and
TheialDE [48], leverage MCP to facilitate agentic workflows and
streamline cross-platform operations. This trend indicates a shift
toward embedding MCP in developer environments to enhance
productivity and reduce manual integration efforts. Furthermore,
cloud platforms like Cloudflare [8] and financial service providers
such as Block (Square) [43] and Stripe [44] are exploring MCP to
improve security, scalability, and governance in multi-tenant en-
vironments. The widespread adoption of MCP by these industry
leaders not only highlights its growing relevance but also points
to its potential as a foundational layer in Al-powered ecosystems.
As more companies integrate MCP into their operations, the pro-
tocol is set to play a central role in shaping the future of Al tool
integration. Looking ahead, MCP is poised to become a key enabler
of Al-driven workflows, driving more secure, scalable, and efficient
Al ecosystems across industries.

4.1.2 Community-Driven MCP Servers. Anthropic has not yet re-
leased an official MCP marketplace, but the vibrant MCP community
has stepped in to fill this gap by creating numerous independent
server collections and platforms. As shown in Table 2, platforms
such as MCP.so [33], Glama [18], and PulseMCP [14] host thousands
of servers, allowing users to discover and integrate a wide range
of tools and services. These community-driven platforms have sig-
nificantly accelerated the adoption of MCP by providing accessible
repositories where developers can publish, manage, and share their
MCP servers. Desktop-based solutions like Dockmaster [31] and
Toolbase [17] further enhance local MCP deployment capabilities,
empowering developers to manage and experiment with servers in

Conference’17, July 2017, Washington, DC, USA

Table 2: Overview of MCP server collections and deployment
modes (As of March 27, 2025).

Collection Author Mode # Servers
MCP.so [33] mcp.so Website 4774
Glama [18] glama.ai Website 3356

PulseMCP [14]
Smithery [27]
Dockmaster [31]
Official Collection [5]

Antanavicius et al. Website 3164
Henry Mao Website 2942
mcp-dockmater ~ Desktop 517
Anthropic List 320
AIMCP [21] Hekmon Website 313
MCP.run [32] mcp.run Website 114
Awesome MCP Servers [2] Stephen Akinyemi List 88
mcp-get registry [24] Michael Latman ~ Website 59

Awesome MCP Servers [19] wong2 Website 34
OpenTools [39] opentoolsteam Website 25
Toolbase [17] gching Desktop 24

make inference [34] mkinf Website 20
Crypto MCP Servers [15] Luke Fan List 13

isolated environments. The rise of community-driven MCP server
ecosystems reflects the growing enthusiasm for MCP and highlights
the need for a formalized marketplace.

4.1.3 SDKs and Tools. With the continuous growth of community-
driven tools and official SDKs, the MCP ecosystem is becoming
increasingly accessible, allowing developers to integrate MCP into
various applications and workflows efficiently. Official SDKs are
available in multiple languages, including TypeScript, Python, Java,
Kotlin, and C#, providing developers with versatile options to imple-
ment MCP in different environments. In addition to official SDKs,
the community has contributed numerous frameworks and utilities
that simplify MCP server development. Tools such as EasyMCP and
FastMCP offer lightweight TypeScript-based solutions for quickly
building MCP servers, while FastAPI to MCP Auto Generator en-
ables the seamless exposure of FastAPI endpoints as MCP tools. For
more complex scenarios, Foxy Contexts provides a Golang-based
library to build MCP servers, and Higress MCP Server Hosting ex-
tends the API Gateway (based on Envoy) to host MCP servers with
wasm plugins. Server generation and management platforms such
as Mintlify, Speakeasy, and Stainless further enhance the ecosystem
by automating MCP server generation, providing curated MCP
server lists, and enabling faster deployment with minimal manual
intervention. These platforms empower organizations to rapidly
create and manage secure and well-documented MCP servers.

4.2 Use Cases

MCP has become a vital tool for Al applications to effectively com-
municate with external tools, APIs, and systems. By standardizing
interactions, MCP simplifies complex workflows, boosting the ef-
ficiency of Al-driven applications. Below, we explore three key
platforms (i.e., OpenAl, Cursor, and Cloudflare) that have success-
fully integrated MCP, highlighting their distinct use cases.

4.2.1 OpenAl: MCP Integration in Al Agents and SDKs. OpenAl
has adopted MCP to standardize Al-to-tool communication, rec-
ognizing its potential to enhance integration with external tools.
Recently, OpenAl introduced MCP support in its Agent SDK, en-
abling developers to create Al agents that seamlessly interact with

X Hou, Y Zhao, S Wang, and H Wang

external tools. In a typical workflow, developers use the Agent SDK
to define tasks that require external tool invocation. When an Al
agent encounters a task like retrieving data from an API or querying
a database, the SDK routes the request through an MCP server. The
request is transmitted via the MCP protocol, ensuring proper for-
matting and real-time response delivery to the agent. OpenAI’s plan
to integrate MCP into the Responses API will streamline AI-to-tool
communication, allowing AI models like ChatGPT to interact with
tools dynamically without extra configuration. Additionally, Ope-
nAlI aims to extend MCP support to ChatGPT desktop applications,
enabling Al assistants to handle various user tasks by connecting to
remote MCP servers, further bridging the gap between Al models
and external systems.

4.2.2 Cursor: Enhancing Software Development with MCP-Powered
Code Assistants. Cursor uses MCP to enhance software develop-
ment by enabling Al-powered code assistants that automate com-
plex tasks. With MCP, Cursor allows Al agents to interact with
external APIs, access code repositories, and automate workflows
directly within the integrated development environment. When a
developer issues a command within the IDE, the Al agent evaluates
whether external tools are needed. If so, the agent sends a request to
an MCP server, which identifies the appropriate tool and processes
the task, such as running API tests, modifying files, or analyzing
code. The results are then returned to the agent for further action.
This integration helps automate repetitive tasks, minimizing er-
rors and enhancing overall development efficiency. By simplifying
complex processes, Cursor boosts both productivity and accuracy,
allowing developers to execute multi-step operations effortlessly.

4.2.3 Cloudflare: Remote MCP Server Hosting and Scalability. Cloud-
flare has played a pivotal role in transforming MCP from a local
deployment model to a cloud-hosted architecture by introducing
remote MCP server hosting. This approach eliminates the com-
plexities associated with configuring MCP servers locally, allowing
clients to connect to secure, cloud-hosted MCP servers seamlessly.
The workflow begins with Cloudflare hosting MCP servers in se-
cure cloud environments that are accessible via authenticated API
calls. Al agents initiate requests to the Cloudflare MCP server us-
ing OAuth-based authentication, ensuring that only authorized
entities can access the server. Once authenticated, the agent dy-
namically invokes external tools and APIs through the MCP server,
executing tasks such as data retrieval, document processing, or
API integration. This approach not only reduces the risk of mis-
configuration but also ensures seamless execution of Al-powered
workflows across distributed environments. Furthermore, Cloud-
flare’s multi-tenant architecture allows multiple users to securely
access and manage their own MCP instances, ensuring isolation
and preventing data leakage. Cloudflare’s solution thus extends
MCP’s capabilities by enabling enterprise-grade scalability and
secure multi-device interoperability.

The adoption of MCP by platforms like OpenAl, Cursor, and
Cloudflare highlights its flexibility and growing role in Al-driven
workflows, enhancing efficiency, adaptability, and scalability across
development tools, enterprise applications, and cloud services.

Model Context Protocol (MCP): Landscape, Security Threats, and Future Research Directions

5 SECURITY AND PRIVACY ANALYSIS

MCP servers, as open and extensible platforms, introduce various
security risks throughout their lifecycle. In this section, we analyze
security threats across different phases: creation, operation, and
update. Each phase of the MCP server lifecycle presents unique
challenges that, if not properly mitigated, can compromise system
integrity, data security, and user privacy.

5.1 Security Risks in the Creation Phase

The creation phase of an MCP server involves registering the server,
deploying the installer, and verifying code integrity. This phase
introduces three key risks: name collision, installer spoofing, and
code injection/backdoor.

5.1.1 Name Collision. Server name collision occurs when a ma-
licious entity registers an MCP server with an identical or decep-
tively similar name to a legitimate server, deceiving users during
the installation phase. Since MCP clients primarily rely on the
server’s name and description when selecting servers, they
are vulnerable to such impersonation attacks. Once a compromised
server is installed, it can mislead Al agents and clients into in-
voking the malicious server, potentially exposing sensitive data,
executing unauthorized commands, or disrupting workflows. For
example, an attacker could register a server named mcp-github
that mimics the legitimate github-mcp server, allowing them to
intercept and manipulate sensitive interactions between Al agents
and trusted services. Although MCP currently operates primarily
in local environments, future adoption in multi-tenant envi-
ronments introduces additional risks of name collision. In these
scenarios, where multiple organizations or users might register
servers with similar names, the lack of centralized naming control
can increase the likelihood of confusion and impersonation attacks.
Additionally, as MCP marketplaces grow to support public
server listings, supply chain attacks may become a critical
concern, where malicious servers can replace legitimate ones. To
mitigate these risks, future research can focus on establishing strict
namespace policies, implementing cryptographic server verifica-
tion, and designing reputation-based trust systems to secure MCP
server registrations.

5.1.2 Installer Spoofing. Installer spoofing occurs when attackers
distribute modified MCP server installers that introduce malicious
code or backdoors during the installation process. Each MCP server
requires a unique configuration that users must manually set up
in their local environments before the client can invoke the server.
This manual configuration process creates a barrier for less techni-
cal users, prompting the emergence of unofficial auto-installers
that automate the setup process. As shown in Table 3, tools such
as Smithery-CLI, mcp-get, and mcp-installer streamline the in-
stallation process, allowing users to quickly configure MCP servers
without dealing with intricate server settings.

However, while these auto-installers enhance usability, they also
introduce new attack surfaces by potentially distributing compro-
mised packages. Since these unofficial installers are often sourced
from unverified repositories or community-driven platforms, they
may inadvertently expose users to security risks such as installing

Conference’17, July 2017, Washington, DC, USA

Table 3: Unofficial MCP auto installers (As of March 27, 2025).

Tool Author # Stars # Servers URL

Smithery CLI Henry Mao 170 2942 smithery.ai
mcp.run Dylibso / 118 docs.mep.run
mcp-get Michael Latman 318 59 mcp-get.com
Toolbase gching / 24 gettoolbase.ai

mcp-installer Ani Betts 767 NL!' mcp-installer

! Enables MCP server installation through natural language interaction with the client.

tampered servers or misconfigured environments. Attackers can ex-
ploit these auto-installers by embedding malware that grants
unauthorized access, modifies system configurations, or cre-
ates persistent backdoors. Moreover, most users who opt for
one-click installations rarely review the underlying code for
potential security vulnerabilities, making it easier for attackers
to distribute compromised versions undetected. Addressing these
challenges requires developing a standardized, secure installation
framework for MCP servers, enforcing package integrity checks,
and establishing reputation-based trust mechanisms to assess the
credibility of auto-installers in the MCP ecosystem.

5.1.3 Code Injection/Backdoor. Code injection attacks occur when
malicious code is surreptitiously embedded into the MCP server’s
codebase during the creation phase, often bypassing traditional
security checks. It targets the server’s source code or configuration
files, embedding hidden backdoors that persist even after updates or
security patches. These backdoors allow attackers to silently main-
tain control over the server, enabling actions such as unauthorized
data exfiltration, privilege escalation, or command manipulation.
Code injection is particularly insidious because it can be intro-
duced by compromised dependencies, vulnerable build pipelines,
or unauthorized modifications to the server’s source code. Since
MCP servers often rely on community-maintained components and
open-source libraries, ensuring the integrity of these dependencies
is critical. To mitigate this risk, rigorous code integrity verifi-
cation, strict dependency management, and regular security
audits should be implemented to detect unauthorized mod-
ifications and prevent the introduction of malicious code.
Additionally, adopting reproducible builds and enforcing checksum
validation during deployment can further safeguard MCP servers
from injection-based threats.

5.2 Security Risks in the Operation Phase

The operation phase is when the MCP server actively executes
tools, processes slash commands, and interacts with external APIs.
This phase introduces three major risks: tool name conflicts, slash
command overlap, and sandbox escape.

5.2.1 Tool Name Conflicts. Tool name conflicts arise when mul-
tiple tools within the MCP ecosystem share identical or similar
names, leading to ambiguity and confusion during tool selection
and execution. This can result in Al applications inadvertently in-
voking the wrong tool, potentially executing malicious commands
or leaking sensitive information. A common attack scenario in-
volves a malicious actor registering a tool named send_email that
mimics a legitimate email-sending tool. If the MCP client invokes

https://smithery.ai/
https://docs.mcp.run/
https://mcp-get.com
https://gettoolbase.ai/
https://github.com/anaisbetts/mcp-installer

Conference’17, July 2017, Washington, DC, USA

the malicious version, sensitive information intended for trusted
recipients may be redirected to an attacker-controlled endpoint,
compromising data confidentiality. Beyond name similarity, our
experiments revealed that malicious actors can further manipulate
tool selection by embedding deceptive phrases in tool descrip-
tions. Specifically, we observed that if a tool’s description explicitly
contains directives like “this tool should be prioritized” or “prefer
using this tool first”, the MCP client is more likely to select that tool,
even when its functionality is inferior or potentially harmful. This
introduces a severe risk of toolflow hijacking, where attackers
can leverage misleading descriptions to influence tool selection and
gain control over critical workflows. This underscores the need
for researchers to develop advanced validation and anomaly detec-
tion techniques to identify and mitigate deceptive tool descriptions,
ensuring accurate and secure Al tool selection.

5.2.2 Slash Command Overlap. Slash command overlap occurs
when multiple tools define identical or similar commands, leading
to ambiguity during command execution. This overlap introduces
the risk of executing unintended actions, especially when AI appli-
cations dynamically select and invoke tools based on contextual
cues. Malicious actors can exploit this ambiguity by introducing
conflicting commands that manipulate tool behavior, potentially
compromising system integrity or exposing sensitive data. For in-
stance, if one tool registers a /delete command to remove tempo-
rary files while another uses the same command to erase critical
system logs, an Al application may mistakenly execute the incorrect
command, potentially causing data loss or system instability. Simi-
lar issues have been observed in team chat systems such as Slack,
where overlapping command registrations allowed unauthorized
tools to hijack legitimate invocations, resulting in security breaches
and operational disruptions [52]. Since slash commands are often
surfaced as user-facing shortcuts in client interfaces, mis-
interpreted or conflicting commands can lead to dangerous
outcomes, especially in multi-tool environments. To minimize this
risk, MCP clients should establish context-aware command reso-
lution, apply command disambiguation techniques, and prioritize
execution based on verified tool metadata.

5.2.3 Sandbox Escape. Sandboxing isolates the execution envi-
ronment of MCP tools, restricting their access to critical system
resources and protecting the host system from potentially harmful
operations. However, sandbox escape vulnerabilities arise when
attackers exploit flaws in the sandbox implementation, enabling
them to break out of the restricted environment and gain unautho-
rized access to the host system. Once outside the sandbox, attackers
can execute arbitrary code, manipulate sensitive data, or escalate
privileges, compromising the security and stability of the MCP
ecosystem. Common attack vectors include exploiting weaknesses
in system calls, improperly handled exceptions, and vulnerabilities
in third-party libraries. For instance, a malicious MCP tool could
exploit unpatched vulnerabilities in the underlying container run-
time to bypass confinement and execute commands with elevated
privileges. Similarly, side-channel attacks may allow attackers to
extract sensitive data, undermining the intended isolation of the
sandbox. Examining real-world sandbox escape scenarios in MCP
environments can provide valuable insights for strengthening sand-
box security and preventing future exploitation.

X Hou, Y Zhao, S Wang, and H Wang

5.3 Security Risks in the Update Phase

The update phase involves managing server versions, modifying
configurations, and adjusting access controls. This phase introduces
three critical risks: post-update privilege persistence, re-deployment
of vulnerable versions, and configuration drift.

5.3.1 Post-Update Privilege Persistence. Post-update privilege per-
sistence occurs when outdated or revoked privileges remain active
after an MCP server update, allowing previously authorized users
or malicious actors to retain elevated privileges. This vulnerability
arises when privilege modifications, such as API key revocations
or permission changes, are not properly synchronized or in-
validated following server updates. If these outdated privileges
persist, attackers may exploit them to maintain unauthorized ac-
cess to sensitive resources or perform malicious operations. For
example, in API-driven environments like GitHub or AWS, privilege
persistence has been observed when outdated OAuth tokens or IAM
session tokens remain valid after privilege revocation. Similarly, in
MCP ecosystems, if a revoked API key or modified role configura-
tion is not promptly invalidated after an update, an attacker could
continue invoking privileged actions, potentially compromising
the integrity of the system. Enforcing strict privilege revocation
policies, ensuring privilege changes propagate consistently across
all server instances, and implementing automatic expiration for
API keys and session tokens are essential to reducing the likelihood
of privilege persistence. Comprehensive logging and auditing of
privilege modifications further enhance visibility and help detect
inconsistencies that could indicate privilege persistence.

5.3.2 Re-deployment of Vulnerable Versions. MCP servers, being
open-source and maintained by individual developers or com-
munity contributors, lack a centralized platform for auditing and
enforcing security updates. Users typically download MCP server
packages from repositories like GitHub, npm, or PyPi and configure
them locally, often without formal review processes. This decentral-
ized model increases the risk of re-deploying vulnerable versions,
either due to delayed updates, version rollbacks, or reliance on
unverified package sources. When users update MCP servers, they
may unintentionally roll back to older, vulnerable versions to ad-
dress compatibility issues or maintain stability. Additionally, unof-
ficial auto-installers, such as mcp-get and mcp-installer, which
streamline server installation, may default to cached or outdated
versions, exposing systems to previously patched vulnerabilities.
Since these tools often prioritize ease of use over security, they
may lack version verification or fail to notify users about critical
updates. Because security patches in the MCP ecosystem rely on
community-driven maintenance, delays between vulnerability
disclosure and patch availability are common. Users who do
not actively track updates or security advisories may unknowingly
continue using vulnerable versions, creating opportunities for at-
tackers to exploit known flaws. For example, an attacker could
exploit an outdated MCP server to gain unauthorized access or ma-
nipulate server operations. From a research perspective, analyzing
version management practices in MCP environments can identify
potential gaps and highlight the need for automated vulnerability
detection and mitigation. On the other hand, there is also a press-
ing need to establish an official package management system

Model Context Protocol (MCP): Landscape, Security Threats, and Future Research Directions

with a standardized packaging format for MCP servers and a
centralized server registry to facilitate secure discovery and
verification of available MCP servers.

5.3.3 Configuration Drift. Configuration drift occurs when un-
intended changes accumulate in the system configuration over
time, deviating from the original security baseline. These devia-
tions often arise due to manual adjustments, overlooked updates,
or conflicting modifications made by different tools or users. In
MCP environments, where servers are typically configured and
maintained locally by end-users, such inconsistencies can intro-
duce exploitable gaps and undermine the overall security posture.
With the emergence of remote MCP server support, such as Cloud-
flare’s hosted MCP environments, configuration drift becomes an
even more pressing concern. Unlike local MCP deployments, where
configuration issues may only affect a single user’s environment,
configuration drift in remote or cloud-based MCP servers can im-
pact multiple users or organizations simultaneously. Misconfigu-
rations in multi-tenant environments may expose sensitive data,
lead to privilege escalation, or inadvertently grant malicious actors
broader access than intended. Addressing this issue requires the
implementation of automated configuration validation mechanisms
and regular consistency checks to ensure that both local and remote
MCP environments adhere to secure baseline configurations.

6 DISCUSSION

6.1 Implications

The rapid adoption of MCP is transforming the AI application
ecosystem, introducing new opportunities and challenges that have
significant implications for developers, users, MCP ecosystem main-
tainers, and the broader Al community.

For developers, MCP reduces the complexity of integrating ex-
ternal tools, enabling the creation of more versatile and capable
Al agents that can perform complex, multi-step tasks. By provid-
ing a standardized interface for invoking tools, MCP shifts the
focus from managing intricate integrations to enhancing agent
logic and functionality. However, this increased efficiency comes
with the responsibility to ensure that MCP implementations are
secure, version-controlled, and aligned with best practices. Develop-
ers must remain vigilant about maintaining secure tool configura-
tions and preventing potential misconfigurations that could expose
systems to vulnerabilities.

For users, MCP enhances the experience by enabling seamless in-
teractions between Al agents and external tools, automating work-
flows across platforms such as enterprise data management and
IoT integration. However, as MCP servers gain deeper access to
sensitive data and critical operations, users must remain vigilant
about the risks posed by unverified tools and misconfigured servers.
For MCP ecosystem maintainers, the decentralized nature of
MCP server development and distribution introduces a fragmented
security landscape. MCP servers are often hosted on open-source
platforms, where updates and patches are community-driven and
may vary in quality and frequency. Without centralized oversight,
inconsistencies in server configurations and outdated versions can
introduce potential vulnerabilities. As the MCP ecosystem evolves
to support remote server hosting and multi-tenant environments,

Conference’17, July 2017, Washington, DC, USA

maintainers must remain attentive to potential risks associated
with configuration drift, privilege persistence, and re-deployment
of vulnerable versions.

For the broader AT community, MCP unlocks new possibilities by
enhancing agentic workflows through cross-system coordination,
dynamic tool invocation, and collaborative multi-agent systems.
MCP’s ability to standardize interactions between agents and tools
has the potential to accelerate Al adoption across industries, driv-
ing innovation in fields such as healthcare, finance, and enterprise
automation. However, as MCP adoption grows, the Al community
must address emerging ethical and operational concerns, such as
ensuring fair and unbiased tool selection, safeguarding sensitive
user data, and preventing potential misuse of Al capabilities. Bal-
ancing these considerations will be essential to ensuring that MCP’s
benefits are widely distributed while maintaining accountability
and trust within the AT ecosystem.

6.2 Challenges

Despite its potential, MCP’s adoption brings forth a range of chal-
lenges that need to be addressed to ensure its sustainable growth
and responsible development:

Lack of centralized security oversight. Since MCP servers are
managed by independent developers and contributors, there is no
centralized platform to audit, enforce, or validate security standards.
This decentralized model increases the likelihood of inconsisten-
cies in security practices, making it difficult to ensure that all MCP
servers adhere to secure development principles. Moreover, the
absence of a unified package management system for MCP servers
complicates the installation and maintenance process, increasing
the likelihood of deploying outdated or misconfigured versions. The
use of unofficial installation tools across different MCP clients fur-
ther introduces variability in server deployment, making it harder
to maintain consistent security standards.

Authentication and authorization gaps. MCP currently lacks
a standardized framework for managing authentication and au-
thorization across different clients and servers. Without a unified
mechanism to verify identities and regulate access, it becomes dif-
ficult to enforce granular permissions, especially in multi-tenant
environments where multiple users and agents may interact with
the same MCP server. The absence of robust authentication proto-
cols increases the risk of unauthorized tool invocation and exposes
sensitive data to malicious actors. Moreover, inconsistencies in how
different MCP clients handle user credentials further exacerbate
these security challenges, making it difficult to maintain a consis-
tent access control policy across deployments.

Insufficient debugging and monitoring mechanisms. MCP
lacks comprehensive debugging and monitoring mechanisms, mak-
ing it difficult for developers to diagnose errors, trace tool inter-
actions, and assess system behavior during tool invocation. Since
MCP clients and servers operate independently, inconsistencies
in error handling and logging can obscure critical security events
or operational failures. Without robust monitoring frameworks
and standardized logging mechanisms, identifying anomalies, pre-
venting system failures, and mitigating potential security incidents
becomes challenging, hindering the development of more resilient
MCP ecosystems.

Conference’17, July 2017, Washington, DC, USA

Maintaining consistency in multi-step, cross-system work-
flows. MCP allows Al agents to execute multi-step workflows by
invoking multiple tools across different systems through a unified
interface. Ensuring consistent context across successive tool inter-
actions is inherently difficult due to the distributed nature of these
systems. Without effective state management and error recovery
mechanisms, MCP risks propagating errors or losing intermediate
results, leading to incomplete or inconsistent workflows. Addition-
ally, dynamic coordination across diverse platforms can introduce
delays and conflicts, further complicating the seamless execution
of workflows within MCP environments.

Scalability challenges in multi-tenant environments. As MCP
evolves to support remote server hosting and multi-tenant environ-
ments, maintaining consistent performance, security, and tenant
isolation becomes increasingly complex. Without robust mecha-
nisms for resource management and tenant-specific configuration
policies, misconfigurations can lead to data leakage, performance
issues, and privilege escalation. Ensuring scalability and isolation
is critical for MCP’s reliability in enterprise deployments.
Challenges in embedding MCP in smart environments. Inte-
grating MCP into smart environments, such as smart homes, indus-
trial IoT systems, or enterprise automation platforms, introduces
unique challenges related to real-time responsiveness, interoperabil-
ity, and security. MCP servers in these environments must handle
continuous streams of data from multiple sensors and devices while
maintaining low-latency responses. Moreover, ensuring seamless
interaction between Al agents and heterogeneous device ecosys-
tems often requires custom adaptations, increasing development
complexity. Compromised MCP servers in smart environments can
lead to unauthorized control over critical systems, threatening both
safety and data integrity.

6.3 Recommendations for MCP stakeholders

To safeguard the long-term success and security of MCP, all stake-
holders, including MCP maintainers, developers, researchers, and
end-users, should implement best practices and proactively address
evolving challenges within the ecosystem.

Recommendations for MCP maintainers. MCP maintainers
play a critical role in establishing security standards, improving
version control, and ensuring ecosystem stability. To reduce the risk
of security vulnerabilities, maintainers should establish a formal
package management system that enforces strict version control
and ensures that only verified updates are distributed to users. Ad-
ditionally, introducing a centralized server registry would enable
users to discover and validate MCP servers more securely, reducing
the risk of interacting with malicious or misconfigured servers. To
further enhance security, maintainers should promote the adop-
tion of cryptographic signatures for verifying MCP packages and
encourage periodic security audits to identify and mitigate vulner-
abilities. Moreover, implementing a secure sandboxing framework
can help prevent privilege escalation and protect host environments
from malicious tool executions.

Recommendations for developers. Developers integrating MCP
into Al applications should prioritize security and resilience by
adhering to secure coding practices and maintaining thorough doc-
umentation. Enforcing version management policies can prevent

X Hou, Y Zhao, S Wang, and H Wang

rollbacks to vulnerable versions, while thorough testing ensures
reliable MCP integrations before deployment. To mitigate config-
uration drift, developers should automate configuration manage-
ment and adopt infrastructure-as-code (IaC) practices. Addition-
ally, implementing robust tool name validation and disambiguation
techniques can prevent conflicts that lead to unintended behav-
ior. Leveraging runtime monitoring and logging helps track tool
invocations, detect anomalies, and mitigate threats effectively.
Recommendations for researchers. Given the decentralized na-
ture of MCP server deployment and the evolving threat landscape,
researchers should focus on conducting systematic security analy-
ses to uncover potential vulnerabilities in tool invocation, sandbox
implementations, and privilege management. Exploring techniques
to enhance sandbox security, mitigate privilege persistence, and
prevent configuration drift can significantly strengthen MCP’s se-
curity posture. In addition, researchers should investigate more
effective approaches for version control and package management
in decentralized ecosystems to reduce the likelihood of re-deploying
vulnerable versions. Researchers can help MCP maintainers and
developers stay ahead of emerging threats by developing auto-
mated vulnerability detection methods and proposing secure up-
date pipelines. Another critical area for research is the exploration
of context-aware agent orchestration in multi-tool environments.
As MCP increasingly supports multi-step, cross-system workflows,
ensuring state consistency and preventing tool invocation conflicts
becomes paramount. Researchers can explore techniques for dy-
namic state management, error recovery, and workflow validation
to ensure seamless operation in complex environments.
Recommendations for end-users. End-users should remain vig-
ilant about security risks and adopt practices to safeguard their
environments. They should prioritize using verified MCP servers
and avoid unofficial installers that may introduce vulnerabilities.
Regularly updating MCP servers and monitoring configuration
changes can prevent misconfigurations and reduce exposure to
known exploits. Properly configuring access control policies helps
prevent privilege escalation and unauthorized tool usage. For users
relying on remote MCP servers, choosing providers that follow
strict security standards can minimize risks in multi-tenant environ-
ments. Promoting user awareness and encouraging best practices
will enhance overall security and resilience.

7 CONCLUSION

This paper presents the first comprehensive analysis of the MCP
ecosystem landscape. We examine its architecture, core compo-
nents, operational workflows, and server lifecycle stages. Further-
more, we explore the adoption, diversity, and use cases, while iden-
tifying potential security threats throughout the creation, opera-
tion, and update phases. We also highlight the implications and
risks associated with MCP adoption and propose actionable recom-
mendations for stakeholders to enhance security and governance.
Additionally, we outline future research directions to tackle emerg-
ing risks and improve MCP’s resilience. As MCP continues to gain
traction with industry leaders such as OpenAl and Cloudflare, ad-
dressing these challenges will be vital to ensuring its long-term
success and enabling Al agents to securely and efficiently interact
with an expanding array of external tools and services.

Model Context Protocol (MCP): Landscape, Security Threats, and Future Research Directions

REFERENCES

[1] ahujasid. 2025. BlenderMCP - Blender Model Context Protocol Integration.
https://github.com/ahujasid/blender-mcp.

[2] Stephen Akinyemi. 2025. Awesome MCP Servers by Appcypher. https://github.
com/appcypher/awesome-mcp-servers.

[3] Anthropic. 2024. For Claude Desktop Users. https://modelcontextprotocol.io/
quickstart/user.

[4] Anthropic. 2024. Introducing the Model Context Protocol. https://www.anthropic.
com/news/model-context-protocol.

[5] Anthropic. 2025. Official Collection of MCP Servers. https://github.com/
modelcontextprotocol/servers.

[6] ByteDance. 2024. Coze plugin store. https://www.coze.com/store/plugin.

[7] Cline. 2025. Cline. https://github.com/cline/cline.

[8] Cloudflare. 2025. Cloudflare. https://www.cloudflare.com.

[9] Codeium. 2025. Codeium. https://codeium.com.

[10] Sourcegraph Cody. 2025. Cody supports additional context through Anthropic’s
Model Context Protocol. https://sourcegraph.com/blog/cody-supports-anthropic-
model-context-protocol.

[11] Florin Cuconasu, Giovanni Trappolini, Federico Siciliano, Simone Filice, Cesare
Campagnano, Yoelle Maarek, Nicola Tonellotto, and Fabrizio Silvestri. 2024. The
Power of Noise: Redefining Retrieval for RAG Systems. In Proceedings of the 47th
International ACM SIGIR Conference on Research and Development in Information
Retrieval (Washington DC, USA) (SIGIR "24). Association for Computing Machin-
ery, New York, NY, USA, 719-729. https://doi.org/10.1145/3626772.3657834

[12] Cursor. 2025. Learn how to add and use custom MCP tools within Cursor.
https://docs.cursor.com/context/model- context-protocol.

[13] Windsurf Editor. 2025. Windsurf Editor. https://windsurf.com.

[14] Antanavicius et al. 2025. PulseMCP. https://www.pulsemcp.com.

[15] Luke Fan. 2025. Awesome Crypto MCP Servers. https://github.com/badkk/
awesome-crypto-mcp-servers.

[16] Wengqi Fan, Yujuan Ding, Liangbo Ning, Shijie Wang, Hengyun Li, Dawei Yin,
Tat-Seng Chua, and Qing Li. 2024. A Survey on RAG Meeting LLMs: Towards
Retrieval-Augmented Large Language Models. In Proceedings of the 30th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining (Barcelona, Spain)
(KDD °24). Association for Computing Machinery, New York, NY, USA, 6491-6501.
https://doi.org/10.1145/3637528.3671470

[17] gching. 2025. Toolbase. https://gettoolbase.ai.

[18] glama.ai. 2025. Glama MCP Servers. https://glama.ai/mcp/servers.

[19] Goose. 2025. Goose. https://goose.ai.

[20] Nadeeshaan Gunasinghe and Nipuna Marcus. 2021. Language Server Protocol and
Implementation. Springer.

[21] Hekmon. 2025. AiMCP. https://www.aimcp.info.

[22] JetBrains. 2025. JetBrains MCP Server. https://plugins.jetbrains.com/plugin/
26071-mcp-server.

[23] LangChain. 2022. LangChain: Framework for developing applications powered
by language models. https://github.com/langchain-ai/langchain.

[24] Michael Latman. 2025. mcp-get. https://mcp-get.com.

[25] LibreChat. 2025. LibreChat. https://librechat.ai.

[26] Jerry Liu. 2022. Llamalndex: A data framework for LLM applications. https:
//github.com/run-1llama/llama_index.

[27] Henry Mao. 2025. Smithery. https://smithery.ai.

(28]

[51]

[52]

(53]

Conference’17, July 2017, Washington, DC, USA

Baidu Maps. 2025. Baidu Maps MCP Servers. https://Ibs.baidu.com/fag/api?title=
mcpserver/base.

Emacs MCP. 2025. Emacs MCP. https://github.com/lizqwerscott/mcp.el.
Tripo3D MCP. 2025. Tripo3D MCP. https://blender-mcp.com/.

mcp dockmater. 2025. Dockmaster. https://mcp-dockmaster.com.

mcp.run. 2025. mep.run. https://mep.run.

mcp.so. 2025. MCP.so. https://mcp.so/.

mkinf. 2025. make inference. https://mkinf.io.

OpenAl 2023. ChatGPT plugins. https://openai.com/index/chatgpt-plugins/.
OpenAl 2023. Funcation Calling. https://platform.openai.com/docs/guides/
function-calling?api-mode=responses.

OpenAl 2025. OpenAlI Agents SDK - Model context protocol (MCP). https:
//openai.github.io/openai-agents-python/mcp/.

OpenSumi. 2025. OpenSumi. https://github.com/opensumi/core.
opentoolsteam. 2025. OpenTools. https://opentools.com.
Model Context Protocol. 2024. GitHub MCP Server.
modelcontextprotocol/servers/tree/main/src/github.
Model Context Protocol. 2024. Slack MCP Server.
modelcontextprotocol/servers/tree/main/src/slack.
Replit. 2025. Replit. https://replit.com.

Block (Square). 2025. Block (Square). https://glama.ai/mcp/servers/@block/
square-mcp/tools/team.

Stripe. 2025. Stripe. https://stripe.com.

Microsoft Copilot Studio. 2025. Introducing Model Context Proto-
col (MCP) in Copilot Studio: Simplified Integration with AI Apps and
Agents. https://www.microsoft.com/en-us/microsoft-copilot/blog/copilot-
studio/introducing-model-context-protocol-mcp-in-copilot-studio-simplified-
integration-with-ai-apps-and-agents/.

Tencent. 2024. Tencent plugin shop. https://yuangi.tencent.com/plugin-shop.
Apify MCP Tester. 2025. Apify MCP Tester. https://apify.com/jiri.spilka/tester-
mcp-client.

TheiaAl/TheialDE. 2025. TheiaAl/TheiaIDE. https://theia-ide.org/docs/user ai/.
wong2. 2025. Awesome MCP Servers by wong2. https://mcpservers.org.
Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yiwen Ding, Boyang Hong,
Ming Zhang, Junzhe Wang, Senjie Jin, Enyu Zhou, Rui Zheng, Xiaoran Fan, Xiao
Wang, Limao Xiong, Yuhao Zhou, Weiran Wang, Changhao Jiang, Yicheng Zou,
Xiangyang Liu, Zhangyue Yin, Shihan Dou, Rongxiang Weng, Wenjuan Qin,
Yongyan Zheng, Xipeng Qiu, Xuanjing Huang, Qi Zhang, and Tao Gui. 2025. The
rise and potential of large language model based agents: a survey. Science China
Information Sciences 68, 2 (Jan. 2025), 121101. https://doi.org/10.1007/s11432-
024-4222-0

Zed. 2025. Zed - Model Context Protocol. https://zed.dev/docs/assistant/model-
context-protocol.

Mingming Zha, Jice Wang, Yuhong Nan, Xiaofeng Wang, Yuging Zhang, and Zelin
Yang. 2022. Hazard Integrated: Understanding Security Risks in App Extensions
to Team Chat Systems. In 29th Annual Network and Distributed System Security
Symposium, NDSS 2022, San Diego, California, USA, April 24-28, 2022. The Internet
Society. https://www.ndss-symposium.org/ndss-paper/auto-draft-262/

Yanjie Zhao, Xinyi Hou, Shenao Wang, and Haoyu Wang. 2024. LLM App Store
Analysis: A Vision and Roadmap. ACM Trans. Softw. Eng. Methodol. (Dec. 2024).
https://doi.org/10.1145/3708530 Just Accepted.

https://github.com/

https://github.com/

https://github.com/ahujasid/blender-mcp
https://github.com/appcypher/awesome-mcp-servers
https://github.com/appcypher/awesome-mcp-servers
https://modelcontextprotocol.io/quickstart/user
https://modelcontextprotocol.io/quickstart/user
https://www.anthropic.com/news/model-context-protocol
https://www.anthropic.com/news/model-context-protocol
https://github.com/modelcontextprotocol/servers
https://github.com/modelcontextprotocol/servers
https://www.coze.com/store/plugin
https://github.com/cline/cline
https://www.cloudflare.com
https://codeium.com
https://sourcegraph.com/blog/cody-supports-anthropic-model-context-protocol
https://sourcegraph.com/blog/cody-supports-anthropic-model-context-protocol
https://doi.org/10.1145/3626772.3657834
https://docs.cursor.com/context/model-context-protocol
https://windsurf.com
https://www.pulsemcp.com
https://github.com/badkk/awesome-crypto-mcp-servers
https://github.com/badkk/awesome-crypto-mcp-servers
https://doi.org/10.1145/3637528.3671470
https://gettoolbase.ai
https://glama.ai/mcp/servers
https://goose.ai
https://www.aimcp.info
https://plugins.jetbrains.com/plugin/26071-mcp-server
https://plugins.jetbrains.com/plugin/26071-mcp-server
https://github.com/langchain-ai/langchain
https://mcp-get.com
https://librechat.ai
https://github.com/run-llama/llama_index
https://github.com/run-llama/llama_index
https://smithery.ai
https://lbs.baidu.com/faq/api?title=mcpserver/base
https://lbs.baidu.com/faq/api?title=mcpserver/base
https://github.com/lizqwerscott/mcp.el
https://blender-mcp.com/
https://mcp-dockmaster.com
https://mcp.run
https://mcp.so/
https://mkinf.io
https://openai.com/index/chatgpt-plugins/
https://platform.openai.com/docs/guides/function-calling?api-mode=responses
https://platform.openai.com/docs/guides/function-calling?api-mode=responses
https://openai.github.io/openai-agents-python/mcp/
https://openai.github.io/openai-agents-python/mcp/
https://github.com/opensumi/core
https://opentools.com
https://github.com/modelcontextprotocol/servers/tree/main/src/github
https://github.com/modelcontextprotocol/servers/tree/main/src/github
https://github.com/modelcontextprotocol/servers/tree/main/src/slack
https://github.com/modelcontextprotocol/servers/tree/main/src/slack
https://replit.com
https://glama.ai/mcp/servers/@block/square-mcp/tools/team
https://glama.ai/mcp/servers/@block/square-mcp/tools/team
https://stripe.com
https://www.microsoft.com/en-us/microsoft-copilot/blog/copilot-studio/introducing-model-context-protocol-mcp-in-copilot-studio-simplified-integration-with-ai-apps-and-agents/
https://www.microsoft.com/en-us/microsoft-copilot/blog/copilot-studio/introducing-model-context-protocol-mcp-in-copilot-studio-simplified-integration-with-ai-apps-and-agents/
https://www.microsoft.com/en-us/microsoft-copilot/blog/copilot-studio/introducing-model-context-protocol-mcp-in-copilot-studio-simplified-integration-with-ai-apps-and-agents/
https://yuanqi.tencent.com/plugin-shop
https://apify.com/jiri.spilka/tester-mcp-client
https://apify.com/jiri.spilka/tester-mcp-client
https://theia-ide.org/docs/user_ai/
https://mcpservers.org
https://doi.org/10.1007/s11432-024-4222-0
https://doi.org/10.1007/s11432-024-4222-0
https://zed.dev/docs/assistant/model-context-protocol
https://zed.dev/docs/assistant/model-context-protocol
https://www.ndss-symposium.org/ndss-paper/auto-draft-262/
https://doi.org/10.1145/3708530

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 AI Tooling
	2.2 Motivation

	3 MCP Architecture
	3.1 Core Components
	3.2 Transport Layer and Communication
	3.3 MCP Server Lifecycle

	4 Current Landscape
	4.1 Ecosystem Overview
	4.2 Use Cases

	5 Security and Privacy Analysis
	5.1 Security Risks in the Creation Phase
	5.2 Security Risks in the Operation Phase
	5.3 Security Risks in the Update Phase

	6 Discussion
	6.1 Implications
	6.2 Challenges
	6.3 Recommendations for MCP stakeholders

	7 Conclusion
	References

