
TaintP2X: Detecting Taint-Style Prompt-to-Anything Injection
Vulnerabilities in LLM-Integrated Applications

Junjie He∗†
hjj@hust.edu.cn

Huazhong University of Science and
Technology

Wuhan, China

Shenao Wang∗†
shenaowang@hust.edu.cn

Huazhong University of Science and
Technology

Wuhan, China

Yanjie Zhao†
yanjie_zhao@hust.edu.cn

Huazhong University of Science and
Technology

Wuhan, China

Xinyi Hou†
xinyihou@hust.edu.cn

Huazhong University of Science and
Technology

Wuhan, China

Zhao Liu
r3pwnx@gmail.com
360 AI Security Lab

Beijing, China

Quanchen Zou
zouquanchen@gmail.com

360 AI Security Lab
Beijing, China

Haoyu Wang†‡
haoyuwang@hust.edu.cn

Huazhong University of Science and
Technology

Wuhan, China

ABSTRACT

Large Language Models (LLMs) have revolutionized numerous do-
mains, enabling the development of LLM-integrated applications
that autonomously plan and act through tool calling. While these
applications demonstrate remarkable capabilities, their ability to
invoke sensitive operations, such as file system interactions, code
execution, and database queries, introduces critical security risks. In
particular, prompt injection vulnerabilities, combined with security-
sensitive sink functions, can lead to a broad class of attacks we
define as Prompt-to-Anything Injection (P2Xi). These vulnerabili-
ties, stemming from the misuse of LLM-generated outputs with-
out proper validation, can result in severe consequences such as
Remote Command Execution (RCE), file injection, SQL injection,
and Server-Side Request Forgery (SSRF). To address this emerging
threat, we propose TaintP2X, a novel static taint analysis frame-
work that models LLM-generated outputs as taint sources, tracks
their propagation through sensitive sink functions, and employs
LLM-assisted analysis to prune false positives. TaintP2X achieves
high precision and scalability, systematically identifying P2Xi vul-
nerabilities. In evaluations, TaintP2X demonstrated a 77.1% recall
on a ground truth dataset of 35 P2Xi vulnerabilities, outperforming
state-of-the-art methods. With TaintP2X, we have uncovered 101
∗Both authors contributed equally to this research.
†Hubei Key Laboratory of Distributed System Security, Hubei Engineering Research
Center on Big Data Security, School of Cyber Science and Engineering, Huazhong
University of Science and Technology.
‡Haoyu Wang (haoyuwang@hust.edu.cn) is the corresponding author.

Please use nonacm option or ACM Engage class to enable CC licenses
This work is licensed under a Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International License.
ICSE ’26, April 12–18, 2026, Rio de Janeiro, Brazil
© 2026 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-2025-3/26/04
https://doi.org/10.1145/3744916.3773199

taint paths across 75 open source repositories, with 7 vulnerabilities
confirmed by developers, and 5 of them fixed. These findings high-
light the prevalence and impact of P2Xi vulnerabilities and estab-
lish TaintP2X as a practical solution for securing LLM-integrated
ecosystems.

CCS CONCEPTS

• Security and privacy → Software security engineering; •
Software and its engineering→ Software defect analysis.

ACM Reference Format:

Junjie He, Shenao Wang, Yanjie Zhao, Xinyi Hou, Zhao Liu, Quanchen
Zou, and Haoyu Wang. 2026. TaintP2X: Detecting Taint-Style Prompt-to-
Anything Injection Vulnerabilities in LLM-Integrated Applications. In 2026
IEEE/ACM 48th International Conference on Software Engineering (ICSE ’26),
April 12–18, 2026, Rio de Janeiro, Brazil. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3744916.3773199

1 INTRODUCTION

Large Language Models (LLMs) have revolutionized numerous
tasks, demonstrating remarkable capabilities in areas such as code
generation [11], natural language understanding [25], and logical
reasoning [12]. Building on these advancements, LLM-integrated

applications [42, 48], also referred to as LLM-based agents [41],
have emerged as the early forms of neuro-symbolic systems [18],
combining LLMs’ natural language understanding with structured
logic to autonomously plan and act in dynamic environments.
One of the most important features of these agents is their abil-
ity to perform actions, primarily implemented through tool call-
ing [17, 33, 34] (also called function calling [7, 36]), which enables
interactions with local systems and external environments. For
instance, frameworks like LangChain [17] and CrewAI [5] have
introduced high-level abstractions and APIs to support tool integra-
tions. LangChain, for example, provides a tool decorator that allows

https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode
https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode
https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode
https://doi.org/10.1145/3744916.3773199
https://doi.org/10.1145/3744916.3773199

ICSE ’26, April 12–18, 2026, Rio de Janeiro, Brazil Junjie He et al.

developers to define external functions accessible to the LLM dur-
ing runtime [17], while CrewAI offers a flexible framework where
agents can leverage a wide range of pre-built or custom tools in
response to user prompts [5]. Building on these capabilities, LLM-
integrated applications have rapidly evolved into a streamlined
development paradigm, widely adopted across various domains, in-
cluding mobile services [40, 43], DeFi [15, 39], and various software
engineering tasks [14, 20, 45].

Despite the advancements brought by LLM-integrated appli-
cations, the ability to invoke tools that perform sensitive opera-
tions, such as file system interactions, code execution, and data-
base queries, also introduces critical security challenges [8, 21, 27],
especially in the context of prompt injection vulnerabilities. For
instance, Liu et al. [21] introduced the concept of LLM4Shell, where
prompt manipulations enable attackers to execute arbitrary shell
commands, while Pedro et al. [27] demonstrated Prompt-to-SQL
Injection, where malicious prompts can lead to unsafe SQL queries
in Text-to-SQL systems [31]. However, the risks posed by combin-
ing prompt injection with security-sensitive operations extend far
beyond these specific examples. To address this broader class of
vulnerabilities, we introduce and define a new vulnerability para-
digm called Prompt-to-Anything Injection, which we refer to
as P2Xi1 for short in this paper. These vulnerabilities arise from de-
velopers’ over-trust in LLM-generated outputs and their failure to
validate or sanitize unpredictable contents before passing them to
downstream sensitive sink functions. Notably, a specific Common
Weakness Enumeration (CWE) category, CWE-1426: Improper Vali-
dation of Generative AI Output, has been introduced to describe this
vulnerability pattern. Depending on the combination of sensitive
sink functions involved, these vulnerabilities can result in a wide
range of security consequences, such as command injection (lead-
ing to Remote Command Execution, RCE), code injection (leading
to Arbitrary Code Execution, ACE), SQL injection (SQLi), file in-
jection [4] (leading to arbitrary file read/write, as LLM-generated
outputs can manipulate file paths or contents), Server-Side Re-
quest Forgery (SSRF, as LLM outputs may construct unsafe URLs
to internal services), Cross-Site Scripting (XSS, when unescaped
LLM-generated HTML or JavaScript is rendered in the browser),
Server-Side Template Injection (SSTI, as LLM-generated template
is processed by unsafe template engines), and so on.
Research Gaps. Existing works have made some efforts in iden-
tifying these vulnerabilities in LLM-integrated applications, but
face notable limitations in scope and scalability. For example, Pe-
dro et al. [27] focuses on Prompt-to-SQL injection vulnerabilities,
relying on manual testing and evaluating only 5 real-world ap-
plications. LLMSmith [21] combines lightweight static analysis
and white/black-box testing to detect LLM4Shell vulnerabilities,
but its evaluation is limited to 11 frameworks and 50 applications.
Building on these efforts, AgentFuzz [8] introduces a directed
greybox fuzzing approach to detect taint-style vulnerabilities in
LLM-based agents, using LLMs to generate functionality-specific
seed prompts and employing feedback-driven prioritization and
mutation strategies. However, it remains constrained to dynamic
testing, analyzing only 20 agent applications. In summary, current

1Here, X serves as a wildcard, representing any sensitive operation or consequence
that can result from the injection.

methods suffer from two key limitations. First, they narrowly focus
on specific vulnerability types, without addressing the broader P2Xi
paradigm. Second, their reliance on dynamic testing limits scala-
bility, as it requires runtime execution of applications and restricts
applicability to frameworks and applications with pre-built testing
environments. These limitations leave the potential prevalence and
impact of P2Xi vulnerabilities in the wild largely unexplored, par-
ticularly across the diverse and less-studied applications within the
long-tail of LLM-integrated agent ecosystems.
Insights and Challenges. To this end, our core insight is that the
sensitive sink functions associated with P2Xi vulnerabilities align
with those in traditional taint-style vulnerabilities, but the taint
source in P2Xi originates from LLM-generated outputs rather than
direct user inputs. This unique characteristic necessitates redefin-
ing taint source specifications to model the outputs of LLMs and
accurately track their propagation through LLM-integrated appli-
cations. Building on this insight, our primary research objective is
to extend existing static taint analysis techniques to detect P2Xi
vulnerabilities. However, this introduces several key challenges.
First, precisely modeling LLM-generated outputs as taint sources is
inherently complex, as these outputs are highly context-dependent,
influenced by prompts, application logic, and runtime interactions.
Second, not all LLM-generated outputs are user-controlled, requir-
ing semantic analysis to identify which outputs are influenced by
user prompts and thus represent potential taint sources. Third, de-
tecting P2Xi requires a comprehensive understanding of sanitizer
functions along the taint propagation path, demanding semantic
analysis to determine whether outputs are adequately validated or
sanitized before reaching sensitive sinks.
Our Work. To detect P2Xi vulnerabilities, we propose a novel
static taint analysis approach named TaintP2X. First, to handle the
complexity of modeling LLM-generated outputs as taint sources,
we pre-define a set of standard API interfaces from 49 major LLM
providers and identify 48 commonly used LLM gateway interfaces
from third-party libraries. Additionally, we leverage large language
models to analyze developer-defined wrapper classes or nested ob-
jects, extracting source specifications automatically. Second, build-
ing on taint-style vulnerabilities, we expand static taint analysis
to track P2Xi-specific taint propagation by incorporating 5 cate-
gories of sensitive sink functions, covering over 236 specific sink
implementations. Finally, to address false positives, we use LLMs to
prune non-actionable sources and invalid taint propagation paths.
For example, sources are pruned if the prompt passed to LLM APIs
is hardcoded, as only user-controlled inputs (e.g., web inputs or
function parameters) are considered valid taint sources. Addition-
ally, we perform semantic analysis of sanitizers along the taint
propagation path, identifying cases where data has been adequately
validated or sanitized, and pruning these paths from further analy-
sis. Together, these components enable TaintP2X to systematically
identify P2Xi vulnerabilities with improved precision and minimal
false positives.
Evaluation. To evaluate the effectiveness of TaintP2X, we con-
structed a ground truth dataset consisting of 35 known P2Xi vulner-
abilities, spanning various categories such as code/command injec-
tion, SQL injection, arbitrary file read/write, and SSRF. TaintP2X
successfully identified 27 of these vulnerabilities, achieving a recall

TaintP2X: Detecting Taint-Style Prompt-to-Anything Injection Vulnerabilities in LLM-Integrated Applications ICSE ’26, April 12–18, 2026, Rio de Janeiro, Brazil

rate of 77.1%. In contrast, LLMSmith detected only 17 vulnerabil-
ities, while AgentFuzz identified 7. Notably, both LLMSmith and
AgentFuzz failed to automatically construct and execute the testing
environments for a substantial portion of cases, which limited their
detection capabilities.

To further assess the prevalence of P2Xi vulnerabilities in real-
world software, we analyzed 4,772 open-source repositories col-
lected from GitHub. TaintP2X reported a total of 101 taint propa-
gation paths across 75 projects, including 74 instances of code/com-
mand injection, 15 instances of arbitrary file read/write, 1 instance
of SQL injection, 9 instances of SSRF, and 2 instances of email in-
jection. Among these, 7 vulnerabilities have been confirmed by
developers, and 5 of them have been fixed until now. These results
demonstrate the practical utility of TaintP2X in detecting P2Xi
vulnerabilities at scale and its potential for enhancing the security
of large-scale LLM-integrated ecosystems.
Contributions. In summary, we make the following contributions:

• Novel Vulnerability Pattern. We introduce and define a
novel vulnerability paradigm called Prompt-to-Anything Injec-
tion (P2Xi), which generalizes prior prompt injection vulnerabil-
ities to encompass a wide range of security-sensitive operations,
highlighting its risks in LLM-integrated applications.

• Practical Tool. We propose TaintP2X, a novel static taint
analysis framework designed to detect P2Xi vulnerabilities.
TaintP2X models LLM-generated outputs as taint source spec-
ifications, extends taint propagation analysis, and leverages
LLM-assisted analysis to prune false positives, enabling precise
and scalable detection of P2Xi vulnerabilities.

• Large-scale Analysis in the Wild. To assess the real-world
impact of P2Xi vulnerabilities, we analyzed 4,772 open-source
repositories and identified 101 taint paths across 75 reposito-
ries, with 7 vulnerabilities confirmed by developers, and 5 of
them fixed. These findings underscore the prevalence of P2Xi
vulnerabilities in LLM-integrated applications.

Artifact Availability. The full source code of TaintP2X is avail-
able at https://github.com/security-pride/TaintP2X.

2 BACKGROUND

2.1 LLM-integrated Applications

LLM-integrated applications, also called LLM agents, are software
systems that integrate LLMs to enable intelligent and interactive
functionalities, as illustrated in Figure 1. Typically, these applica-
tions adopt a modular architecture to support a variety of tasks,
such as code generation, database querying, and web data scrap-
ing. The general workflow begins with a user submitting a natural
language request through a user interface (UI). The request is then
processed by a prompt template module, which builds an appropri-
ate prompt and sends it to the LLM. The LLM generates executable
actions or code based on the prompt, which is then executed by an
action execution engine, which may involve database or network
operations. The generated data is then processed and organized, and
finally returned to the user interface for display. Throughout the
process, the complexity of interacting with the LLM is seamlessly
managed in the background, allowing users to access advanced
features through a simple interface. This design enables developers

UI

Prompt Processor

LLM

Action Execution

Result Processor

Execute Code /
Database Operation /

Network Operation

Send
Request

Request Send
Prompt

Submit
Action

Result

LLM-integrated
Application

Return
Results

1

2 3

4

5

6

Result
78

Figure 1: Workflow of LLM-integrated Applications.

to create highly customizable and responsive applications to meet
a wide range of user needs.

2.2 Prompt-to-Anything Injection (P2Xi)

While LLM-integrated applications greatly extend the capabili-
ties of modern software systems, integration with them also in-
troduces new security challenges. In particular, implicit trust in
model-generated content has given rise to a new class of vulner-
abilities. A prominent example is “Prompt-to-Anything Injection”
(P2Xi), a newly discovered vulnerability paradigm. P2Xi occurs
when attacker-controlled inputs (directly or indirectly affecting
prompts sent to LLM) result in the generation of malicious out-
puts that are subsequently executed or interpreted by downstream
components. In this case, the prompts act as a conduit for injection-
based attacks that threaten the integrity, confidentiality, or availabil-
ity of the system. The “X” in P2Xi emphasizes the arbitrary nature
of these downstream effects, which may include code execution, file
operations, network requests, data exfiltration, or other unintended
actions. This vulnerability stems from a common pattern in LLM-
integrated applications: model outputs are frequently used not only
for user interaction, but also as input to APIs, command-line tools,
configuration files, or other automated workflows. When these
outputs are automatically trusted and executed without adequate
validation, sanitization, or isolation, maliciously crafted prompts
can induce arbitrary and potentially dangerous behavior in the
target system. Unlike traditional injection attacks (e.g., command
injection or SQL injection), P2Xi exploits the generative and seman-
tic properties of LLM, which makes detection by static analysis or
simple pattern matching more difficult.

2.3 Problem Statement

Problem Overview. In many LLM-integrated applications, user
inputs are dynamically embedded into prompt templates, and the
resulting outputs are directly routed to sensitive components, such
as code execution engines, database interfaces, or file system APIs.
While this architecture significantly enhances automation and inter-
activity, it also introduces critical security risks. Since LLM outputs
are not inherently trustworthy, any downstream execution of unval-
idated model responses can lead to severe vulnerabilities, including

https://github.com/security-pride/TaintP2X

ICSE ’26, April 12–18, 2026, Rio de Janeiro, Brazil Junjie He et al.

Standard
LLM API

§3.1 Source Identification §3.2 Taint Propagation

49 Sources

Third-party
LLM Gateway

48 Sources

Class/Func-level Code Slicing

Source Spec
Generation Custom Wrappers

ModelQuery(
name = "llm_wrapper_chat",
find = "methods",
where = [
class_matches("LLMWrapper"),
name.matches("chat"),

]
)

File Operation
(Read/Write/Del)

Command/Code
Execution

236 Sink Functions

SQL OperationNetwork Request

Taint Analyzer

Taint issue detected:
File: example.py,
Line: 17,
Column: 13
Source: LLMWrapper.chat
Sink: exec
Path: LLMSource -> ExecuteSink

Taint Path from Source to Sink
Vul ReportsFalse Positive

Pruning

§3.3 LLM-assisted Pruning

src san snk

client = OpenAI()
prompt =”YOUR ARE A CHATBOT"
response = client.res.create(
model="gpt-4.1",
input=prompt

)

generate_prompt() ->
OpenAI.res.create() ->
validate_sql_query() ->

unsafe_patterns = [
"OR 1=1", "UNION”

]
execute_query()

Source
Context

Program Dependency Graph

Taint Path

Source Controllability Sanitizer Validation

Figure 2: Overall Workflow of TaintP2X.

RCE, SQL injection, arbitrary file access, XSS, and SSRF. More-
over, the rich variety of API interfaces used in modern applications
broadens the attack surface. Vulnerable LLM modules, once inte-
grated into higher-level systems, can propagate risks throughout
the software stack, thereby amplifying their impact.
Threat Model. In our threat model, we assume that the LLM-
integrated application and its developers are benign and that the
application’s runtime environment has not been compromised. We
consider the attacker to be a malicious user who is able to interact
with the agent through regular operational channels. The main
threat comes from prompt injection attacks, where the attacker
writes prompts that trick the LLM into generating and executing
harmful instructions through vulnerable APIs. We focus on two
types of attackers: remote attackers and local attackers. Remote

attackers interact with the agent through network-exposed inter-
faces such as web APIs or chatbot endpoints. By submitting crafted
malicious prompts, they can trick the model into generating in-
structions that, when passed to vulnerable APIs, trigger server-side
attacks. Such attacks may include RCE, SQL injection, XSS, arbi-
trary file read and write, or SSRF. This attack vector is common
in cloud or server-hosted LLM agent services, as the APIs of these
services are accessible over the Internet. Local attackers operate
on the same device or local network as the agent. They may embed
malicious prompts into files, documents, or other resources that the
agent is configured to process or retrieve, such as files read from
disk, content obtained from local or network drives, or external
retrieval enhancement sources. When the agent obtains these re-
sources, the embedded prompts may trigger sensitive actions or
privilege escalation, which may lead to unauthorized actions or
data leakage.

3 DESIGN OF TAINTP2X

To address the emerging challenges of detecting P2Xi vulnerabil-
ities in LLM-integrated applications, we propose a novel static
taint analysis framework, TaintP2X, which leverages both static
analysis techniques and the reasoning capabilities of LLMs. The
methodology of TaintP2X is designed to systematically model
LLM-generated outputs as taint sources, track their propagation

through program dependency graphs, and identify potential vulner-
abilities in sensitive sink functions. Additionally, we incorporate
LLM-assisted pruning mechanisms to improve precision by reduc-
ing false positives (FPs). As shown in Figure 2, TaintP2X consists of
three key components: (1) Source Identification, where taint sources
are extracted and modeled based on predefined specifications and
dynamic analysis of wrapper functions; (2) Taint Propagation Anal-
ysis, which tracks the flow of tainted data through the program
using static taint analysis techniques; and (3) LLM-Assisted Pruning,
where false positives are mitigated through source controllability
validation and sanitizer validation. Together, these components
enable TaintP2X to detect P2Xi vulnerabilities with high accuracy
and scalability.

3.1 Taint Source Identification

In this subsection, we describe how TaintP2X models taint sources
through a combination of Pre-defined Sources, which include stan-
dardAPI interfaces and third-party LLMgateways, and LLM-assisted
Source Identification, where LLMs are used to analyze custom or
developer-defined code to extract taint source specifications.

3.1.1 Pre-defined Source Collection. To establish a comprehensive
foundation for identifying taint sources, we curated a list of pre-
defined sources by systematically analyzing the APIs and libraries
provided by major LLM providers and widely used third-party
frameworks. Specifically, we focused on two categories: (1) Stan-
dard LLM APIs, which include publicly available APIs from leading
LLM providers such as OpenAI, Hugging Face, and Anthropic, and
(2) Third-party LLM Gateways, which encompass middleware li-
braries like LangChain and litellm that wrap standard APIs for
enhanced functionality or easier integration. The collection process
for the pre-defined sources was heuristic in nature. Specifically, the
first two authors of this paper independently conducted an exten-
sive search to identify widely used APIs and libraries provided by
prominent LLM vendors and frameworks. Their search spanned
academic papers, technical reports, and active open-source reposi-
tories in both research and industrial contexts. After compiling the

TaintP2X: Detecting Taint-Style Prompt-to-Anything Injection Vulnerabilities in LLM-Integrated Applications ICSE ’26, April 12–18, 2026, Rio de Janeiro, Brazil

Table 1: Examples of Pre-defined Taint Sources in TaintP2X.

Category Provider Example API/Method

Standard

OpenAI openai.ChatCompletion.create()

gemini google.generativeai.generate_text()

Anthropic anthropic.Anthropic.messages.create()

mistralai mistralai.client.MistralClient.chat()

groq groq.Groq.chat.completions.create()

Third-party

LangChain langchain.chains.base.Chain.invoke()

llama_index llama_index.llms.openai.OpenAI.chat()

metagpt metagpt.llm.LLM.chat()

babyagi babyagi.BabyAGI.run()

litellm litellm.completion()

initial lists, the two authors systematically reviewed the documen-
tation to refine their respective lists by consolidating redundant
entries, resolving ambiguities, and verifying the functionality of the
APIs and libraries. Once each author had finalized their individual
list, the two lists were merged into a single, unified collection. Dur-
ing the consolidation process, any discrepancies or disagreements
regarding the inclusion of specific APIs or libraries were addressed
through collaborative discussions. In cases where consensus could
not be reached, the third author of this paper was brought in to
mediate and provide a final decision. While this collection process
does not guarantee exhaustive coverage due to the rapidly evolving
ecosystem of LLM tools and libraries, we made a deliberate effort to
include the most representative and widely used APIs. As shown in
Table 1, we identified 49 standard API interfaces from major LLM
providers and 48 third-party gateway methods across libraries such
as LangChain and litellm, resulting in a total of 97 pre-defined
sources (The full list is available in our open-source artifacts [30]).
This ensures that TaintP2X is equipped to handle a diverse range of
real-world applications, while also allowing for future extensibility
as new APIs and libraries emerge.

3.1.2 LLM-assisted Source Identification. While pre-defined sources
provide an initial foundation for identifying common taint sources,
real-world applications often employ custom implementations,
wrappers, or nested function calls that are not directly covered
by standard APIs or third-party libraries. To address these scenar-
ios, TaintP2X leverages LLM to assist in identifying additional
taint sources dynamically, enabling the detection of vulnerabilities
in developer-defined or less-documented codebases. The process
consists of three key steps:
Parsing-based Pre-defined Source Identification. The first step
in TaintP2X’s LLM-assisted source identification process is to lo-
cate the usage of pre-defined sources within the codebase. This
is achieved through parsing-based techniques that analyze the
program’s abstract syntax tree (AST). The goal is to systemat-
ically identify where pre-defined sources—such as API calls to
openai.ChatCompletion.create() or litellm.chat()—are in-
voked. For each identified invocation, TaintP2X records its loca-
tion in the code (e.g., class, method, or function) and its associated
parameters. Parsing-based methods ensure precise matching by

System
You are a static analysis expert. Analyze the provided code snippet and
determine if it acts as a taint source.
TASK:
- Check if the function or method interacts with LLM APIs or gateways.
- Determine if the data passed to the taint source is user-controlled.
- If applicable, classify the function/method as a taint source and output
a JSON result.
INPUT FORMAT: — [Code snippet] —
OUTPUT FORMAT:
Return your result in the following JSON format:

{

"method_name": "<Method Name>",

"is_llm_call": true/false,

"description": "<Explanation of the analysis result>"

}

Figure 3: Simplified Prompt Template for LLM-assisted Taint

Source Identification.

accounting for both direct invocations and indirect calls through
aliases or imports. For example, if a developer uses import litellm
as llm, the parser resolves llm.chat() to the corresponding pre-
defined source. This step establishes a robust mapping between
pre-defined sources and their occurrences, serving as the entry
point for further analysis.
Class/Function-Level Code Slicing. Once pre-defined sources
are located, TaintP2X performs class/function-level code slicing to
extract the surrounding code context. This step involves isolating
the method or class where the pre-defined source is invoked, along
with its dependencies, control flow, and data flow. The slicing pro-
cess ensures that all relevant code contributing to the behavior of
the pre-defined source is included. For instance, if a pre-defined
source such as litellm.chat() is called within a wrapper method
LLMWrapper.chat(), TaintP2X extracts the entire method imple-
mentation, including its parameters, return values, and any inter-
mediate operations. Similarly, if the invocation is part of a class,
the relevant attributes, constructors, and methods are included to
provide a complete picture of the code context. This step ensures
that the extracted code captures critical information needed for
taint source modeling, such as how input data flows into and out
of the pre-defined source.
Source Specification Generation. After obtaining the sliced code
context, TaintP2X leverages LLMs to generate structured taint
source specifications. The extracted code is provided as input to the
LLM, along with a carefully designed prompt to guide its reasoning,
as illustrated in Figure 3. The prompt explicitly asks the LLM to
analyze whether the function or method serves as a taint source and,
if so, to output a structured source specification in JSON format.
This step enables TaintP2X to dynamically augment its list of
taint sources by incorporating developer-defined wrappers and
custom implementations that interact with pre-defined sources. By
leveraging the semantic reasoning capabilities of LLMs, TaintP2X
ensures accurate identification of taint sources, even in complex or
undocumented codebases.

ICSE ’26, April 12–18, 2026, Rio de Janeiro, Brazil Junjie He et al.

3.2 Taint Propagation

To comprehensively and efficiently detect taint propagation paths,
we divide the process into three key components: intra-procedural
propagation, inter-procedural taint derivation, and intersection
analysis. Each component focuses on a specific aspect of taint prop-
agation, ensuring precise tracking of taint flows across program
variables and procedures.
Intra-Procedural Data Flow Construction. The first phase of
the analysis focuses on constructing a complete representation
of data flow relationships within individual procedures. Each pro-
cedure 𝑝 is modeled as a control-flow graph (CFG), denoted as
CFG𝑝 = (N , E), whereN represents the set of program statements
(nodes) and E represents the control-flow edges. The goal of this
phase is to identify all data dependencies within the procedure,
capturing how variables are defined, used, and propagated across
different program points. To achieve this, the analysis tracks the
flow of data through assignments, computations, and control struc-
tures in the procedure. When a variable 𝑣 is defined or updated at a
statement 𝑠1 and subsequently used at another statement 𝑠2, a data
flow edge is established between 𝑠1 and 𝑠2. Such edges collectively
form a data flow graph for the procedure, which captures all rele-
vant dependencies between variables, ensuring that downstream
analyses have a complete foundation for reasoning about potential
taint propagation.
Inter-Procedural Taint Derivation. After intra-procedural prop-
agation, the analysis extends across function boundaries using the
program’s call graph 𝐶𝐺 = (𝐹,𝐶), where 𝐹 is the set of functions,
and 𝐶 ⊆ 𝐹 × 𝐹 represents the call relationships between them.
Inter-procedural propagation is performed in two complementary
directions: forward propagation from taint sources and backward
propagation from taint sinks. In forward propagation, if a function
𝑓 is identified as a taint source and its return value is used as an
argument in a call to another function 𝑔, the taint is propagated
to 𝑔. For example, if 𝑔 contains a statement 𝑦 = 𝑓 (𝑥), and 𝑓 is a
taint source, then 𝑦 is tainted in 𝑔, and 𝑔 itself may be marked as
a derived taint source. Conversely, in backward propagation, the
analysis starts from functions identified as taint sinks and traces
whether their parameters are influenced by upstream functions. If
a function 𝑔 is a taint sink and is invoked from 𝑓 with a tainted
argument, the corresponding calling parameter in 𝑓 is marked as
sink-reachable. This backward propagation ensures that all func-
tions in the call chain contributing to the taint sink are identified.
By iteratively propagating taint information along the call chain in
both directions, the analysis constructs a comprehensive view of
how data flows through the program.
Intersection Analysis. The final phase of the analysis synthesizes
the results of forward and backward inter-procedural propagation
to identify complete taint propagation paths. This is achieved by
computing the intersection of the sets of functions influenced by
taint sources and those contributing to taint sinks. Let S𝑓 denote
the set of functions reachable from taint sources during forward
propagation, and S𝑏 denote the set of functions identified as influ-
encing taint sinks during backward propagation. The intersection
I = S𝑓 ∩ S𝑏 represents the set of functions that lie on both the
source-to-sink propagation path and contribute to the overall taint
flow. For each function 𝑓 ∈ I, the analysis verifies whether there

exists a valid data flow path connecting a taint source to a taint sink
through 𝑓 . This involves examining both intra-procedural data flow
graphs and inter-procedural taint dependencies to ensure that the
propagated taint reaches the sink without interruption. Functions
in I may serve as critical intermediaries in the taint flow, propagat-
ing taint from their input parameters to their return values or from
their parameters to sensitive operations (sinks) within their body.

3.3 LLM-Assisted Pruning

To enhance the precision of static taint analysis and reduce FPs,
TaintP2X integrates an LLM-assisted pruningmechanism that lever-
ages the semantic reasoning capabilities of LLMs. The pruning
process is divided into two core components: source controllability
analysis and sanitizer validation.

3.3.1 Source Controllability Analysis. This component determines
whether the content of prompts provided to LLMs is user-controllable,
a critical factor in identifying prompt injection vulnerabilities. To
achieve this, TaintP2X statically reconstructs the full execution
context of each LLM invocation, capturing both local variables (e.g.,
function arguments and local assignments) and global context (e.g.,
configuration constants and module-level settings). Prompts are
then classified as either user-controllable, if they are derived from
user inputs, function parameters, or other dynamic sources, or non-
user-controllable if they are solely constructed from hardcoded
string literals or immutable constants. User-controllable prompts
are flagged for further analysis, while non-user-controllable prompts
are excluded to reduce unnecessary false positives.

3.3.2 Sanitizer Validation. The second component focuses on val-
idating whether taint propagation chains identified during static
analysis include effective sanitization mechanisms. This step ad-
dresses the challenge of distinguishing between functions that gen-
uinely sanitize inputs and those that merely resemble sanitizers
in naming or structure. TaintP2X employs a multi-turn, inter-
active validation framework powered by LLMs to evaluate each
suspicious taint chain. The process begins with decomposing the
taint chain into function-level sub-tasks, where the LLM is guided
by customized prompts that incorporate prior knowledge such as
exploit patterns, known evasion techniques, and common false-
positive scenarios. The LLM evaluates whether the taint source is
valid, whether sanitization functions within the chain effectively
neutralize taint, and whether the chain as a whole constitutes an ex-
ploitable vulnerability. To enhance robustness, TaintP2X employs
a recursive prompt construction strategy for intermediate nodes
in the taint chain, enabling the LLM to inherit upstream context
while leveraging auxiliary tools (e.g., static code search) to recover
surrounding semantics.

4 EVALUATION

To systematically evaluate the effectiveness of TaintP2X, we focus
on the following research questions (RQs):
RQ1: How effective is TaintP2X in detecting known P2Xi

vulnerabilities? This research question assesses the accu-
racy and completeness of TaintP2X on a curated dataset of
real-world P2Xi vulnerabilities.

TaintP2X: Detecting Taint-Style Prompt-to-Anything Injection Vulnerabilities in LLM-Integrated Applications ICSE ’26, April 12–18, 2026, Rio de Janeiro, Brazil

Table 2: Comparison Results with LLMSmith and AgentFuzz.

Type Repository & Version CVE ID LLMSMITH AgentFuzz TaintP2X

Code Injection

langchain 0.0.131 CVE-2023-29374 Y - Y
langchain 0.0.194 CVE-2023-36095 Y - Y
langchain 0.0.232 CVE-2023-39659 Y - N
langchain <0.0.236 CVE-2023-36258 Y - Y
langchain 0.0.64 CVE-2023-36188 Y - Y
langchain 0.0.194 CVE-2023-38896 Y - Y
langchain 0.0.231 CVE-2023-38860 Y - Y
langchain 0.0.245 CVE-2023-39631 N - Y
langchain <0.0.306 CVE-2023-44467 Y - Y
langchain <0.1.8 CVE-2024-27444 Y - Y
langchain_experimental <0.0.61 CVE-2024-38459 Y - N
litellm 1.40.12 CVE-2024-6825 N - N
llama_index 0.10.25 CVE-2024-3271 Y - Y
llama_index 0.9.46 CVE-2024-3098 Y - Y
llama_index 0.7.13 CVE-2023-39662 Y - Y
MetaGPT v0.6.3 CVE-2024-23750 N - Y
OpenManus 2025.3.13 CVE-2025-2733 N N Y
PandasAI 0.8.0 CVE-2023-39660 Y - Y
PandasAI 0.8.1 CVE-2023-39661 Y - Y
vanna 0.3.3 CVE-2024-5826 Y Y Y
Vanna 0.3.1 CVE-2024-5565 Y Y Y
autogpt v0.5.0 CVE-2024-1881 N Y N

SQL Injection

langchain <v0.0.247 CVE-2025-27135 - - Y
langchain 0.2.5 CVE-2024-8309 - - N
llama_index 0.11.23 CVE-2024-12911 - - Y
llama_index 0.9.28.post2 CVE-2024-23751 - - N
vanna 0.3.4 CVE-2024-5753 - Y Y
vanna 0.3.4 CVE-2024-5827 - Y Y
Vanna 0.6.2 CVE-2024-7764 - Y N

File Read/Write

Superagi v0.0.14 - - N Y
devika CVE-2024-5927 - N Y
devika CVE-2024-5821 - N Y
devika CVE-2024-6331 - N Y

SSRF

quivr 0.0.236 CVE-2024-5885 - Y Y
langchain 0.0.327 CVE-2023-32786 - - N

Total Detected 17 7 27

Note. Superagi v0.0.14 is included based on a public vulnerability disclosure on huntr and has not yet been assigned a CVE. A dash (-) indicates that the
corresponding tool is unable to analyze the given repository, either due to unsupported frameworks, language mismatches, or insufficient coverage of the
vulnerability type.

RQ2:What is the contribution of each coremodule inTaintP2X

to the overall detection performance? This question con-
ducts an ablation study to evaluate the individual impact of
TaintP2X’s four major components, including taint source
identification, static taint propagation, prompt controllability
analysis, and LLM-based validation.

RQ3: How well does TaintP2X perform in analyzing large-

scale, real-world LLM-integrated applications?This ques-
tion examines the scalability and practical effectiveness of
TaintP2X across a wide range of open-source projects drawn
from the real-world LLM application ecosystem.

4.1 Evaluation Setup

Tool Implementation.We implemented a prototype of TaintP2X
based on the open-source static analysis framework Pysa, compris-
ing over 3,500 lines of Python code (excluding third-party libraries
and external tools). The source identification module combines
static parsing with semantic reasoning, leveraging AST analysis

and LLM-generated structured specifications to automatically iden-
tify both standard and custom taint sources. The taint propaga-
tion module, built on Pysa, constructs dataflow graphs, performs
inter-procedural propagation, and applies intersection analysis to
accurately trace complete source-to-sink propagation paths. Finally,
the LLM-assisted pruning module employs a semantics-driven two-
stage process that integrates source controllability analysis with
sanitizer validation, effectively eliminating FPs.
Environment.All experimentswere conducted on a server equipped
with two AMD EPYC 7713 processors (128 cores) and 512 GB of
RAM, running Ubuntu 22.04.5 LTS. For LLM-based analysis and
verification, we employed the DeepSeek-V3 model via its API, al-
lowing the system to interact with the model for structured taint
source generation and taint propagation validation.
Baseline. For baseline selection, we selected two SOTA systems
(LLMSmith [21] and AgentFuzz [8]) as baselines for P2Xi vul-
nerability detection. LLMSmith combines lightweight static anal-
ysis with white-box and black-box testing techniques to detect
LLM4Shell-style vulnerabilities, while AgentFuzz builds upon this

ICSE ’26, April 12–18, 2026, Rio de Janeiro, Brazil Junjie He et al.

by introducing guided grey-box fuzzing specifically targeting taint-
style vulnerabilities in LLM-based agent systems.
Dataset. For the ground truth dataset used in RQ1, we have col-
lected 35 real-world P2Xi vulnerabilities. Specifically, we gathered
17 publicly disclosed vulnerabilities in total from LLMSmith and
AgentFuzz. In addition, two authors independently searched for
relevant P2Xi vulnerabilities using keywords such as “prompt in-
jection” in bug bounty platforms like huntr [13] and vulnerability
databases like NVD [26] and GitHub Advisory Database [9]. After
merging the results and removing duplicates, we obtained an ad-
ditional 18 vulnerabilities. For the large-scale evaluation in RQ3,
we developed a crawler that collected 41,266 open-source GitHub
repositories containing both LLM client instantiations and sensitive
sink functions, from which we selected 4,772 high-quality reposito-
ries (each with at least 50 stars) to build a comprehensive dataset
of real-world LLM-integrated applications.

4.2 RQ1: Effectiveness of TaintP2X

We evaluate the detection effectiveness of TaintP2X using our
curated ground-truth dataset of 35 P2Xi vulnerabilities. Each vul-
nerability is manually verified and linked to a publicly disclosed
CVE identifier or a well-documented community report to ensure
the authenticity and practical relevance of the dataset. These cases
cover four key categories commonly found in LLM-integrated appli-
cations: code injection, SQL injection, arbitrary file access, and SSRF.
All samples are from widely adopted open-source LLM projects to
maximize representativeness.

We applied TaintP2X to this benchmark and evaluated its perfor-
mance using standard detection metrics, including true positives

(TP), false negatives (FN), and overall recall. As described in
Table 2, TaintP2X successfully detected 27 out of 35 vulnerabili-
ties with a recall rate of 77.1%. This high recall demonstrates that
TaintP2X is capable of identifying complex Prompt-to-Execution
attack paths by leveraging its combination of static taint tracking
and LLM-based semantic validation. It is able to reason about deep,
multi-stage logic and contextual semantics to discover subtle vul-
nerabilities that are usually not discovered by traditional analysis
tools. For comparison, we selected two state-of-the-art detection
systems as baselines: LLMSMITH and AgentFuzz. LLMSMITH re-
lies on static template matching and detected 17 vulnerabilities but
failed to identify those involving SQL injection, file operations, or
SSRF. AgentFuzz, which focuses on dynamic analysis in LLM appli-
cations, lacks support for internal LLM framework instrumentation
and detected only 7 vulnerabilities. Beyond overall recall, we fur-
ther analyzed performance across different vulnerability categories
(see Table 2). Results show that TaintP2X maintains robust detec-
tion capabilities across all four categories, with particularly strong
performance in detecting file-related and SSRF vulnerabilities, at-
tributed to its fine-grained modeling of LLM output semantics and
controllable input propagation.

4.3 RQ2: Ablation Study

To systematically assess the contribution of each core module to
overall vulnerability detection, we conducted an ablation study
on a large-scale dataset of 4,772 real-world LLM-integrated appli-
cations. The results are shown in Table 3. We first evaluated the

Table 3: Ablation Study Results Across TaintP2X Variants.

Modules TP FP P TN FN N Total

M2 79 139 218 – – 4,554 4,772
M1+M2 95 168 263 – – 4,509 4,772
M2+M4 69 42 111 107 0 107 218

M1+M2+M4 85 47 132 131 0 131 263
M1+M2+M3+M4 78 36 114 145 4 149 263

Note. TP = True Positives, FP = False Positives, P = Total Positives (TP+FP), TN =
True Negatives, FN = False Negatives, N = Total Negatives (TN+FN). M1: Taint Source
Identification Module. M2: Static Taint Propagation Analysis Module. M3: Prompt
Controllability Analysis Module. M4: LLM-based Risk Chain Validation Module.

static taint propagation analysis module (M2) alone, identify-
ing 218 items that may have taint propagation paths and forming
the initial candidate set (P). At this stage, the system obtained 79
TPs and 139 false positives (FPs), indicating that M2 has a high
recall rate in large-scale static analysis. However, due to the lack
of semantic verification, the FP rate is relatively high. Next, by
integrating the taint source identification module (M1), the
TaintP2X is able to identify developer-defined wrapper classes and
nested objects as taint sources, thereby enhancing the completeness
of the propagation graph. The combined configuration of M1+M2
expands the candidate set to 263 items, increases the TPs to 95,
and increases the FPs to 168, thereby expanding the coverage of
potential vulnerabilities.

To mitigate FPs introduced by static analysis, we integrated
the LLM-based risk chain validation module (M4), which sup-
ports context-aware semantic verification of candidate call chains.
Under the M2+M4 configuration, 111 call chains out of 218 M2
detected paths were verified, 69 TPs and 42 FPs were confirmed,
and the detection accuracy was significantly improved from 36.2%
to 62.2%. Building on this, the M1+M2+M4 combination screened
out 132 high-confidence call chains from 263 candidate call chains,
of which 85 confirmed TPs and 47 FPs, effectively balancing com-
prehensive coverage and improved accuracy. Finally, we introduced
the prompt controllability analysis module (M3) to perform
fine-grained modeling of user input controllability. Under the full
configuration (M1+M2+M3+M4), TaintP2X further improved the
discrimination of negative samples, and the TN increased from 131
to 145. A small number of FNs (FN=4) were observed, which was
mainly attributed to the stricter semantic modeling introduced by
the prompt controllability analysis.

Overall, M4 significantly enhanced both precision and nega-
tive sample discrimination, while M3 contributed to a balanced
optimization between precision and recall by better capturing the
interaction between user input and sensitive operations. This un-
derscores the importance of M3 in identifying the practical impact
of controllable prompts on exploitability, particularly in complex
Prompt-to-Execution attack scenarios, and in improving the sys-
tem’s semantic understanding of potential threats.

4.4 RQ3: Real-World Applicability

To answer RQ3, we designed an empirical study to comprehensively
evaluate the practical effectiveness and deployment adaptability

TaintP2X: Detecting Taint-Style Prompt-to-Anything Injection Vulnerabilities in LLM-Integrated Applications ICSE ’26, April 12–18, 2026, Rio de Janeiro, Brazil

of TaintP2X in real LLM application scenarios. Our evaluation
focuses on two perspectives:

• RQ3.1: End-to-End System Performance Evaluation.We
assessed the overall performance of the complete system con-
figuration (M1+M2+M3+M4) on vulnerability detection tasks,
as detailed in Table 3.

• RQ3.2: Vulnerability Type Coverage and Community

Feedback. We analyzed the tool’s detection capabilities across
representative vulnerability types, as well as its actual accep-
tance within the open-source community.

4.4.1 RQ3.1: End-to-End System Performance Evaluation. With the
complete system configuration enabled, TaintP2X successfully de-
tected 78 TPs, 36 FPs, 145 TNs, and only 4 FNs, demonstrating
strong precision and recall. This strong performance is attributed
to the tool’s accurate modeling of user input controllability and
its context-aware semantic validation of sensitive call chains. As a
result, TaintP2X is able to identify complex prompt-to-execution
attack paths that are often missed by traditional detection methods.
To better understand the causes of FPs, we conducted a system-
atic analysis of erroneous cases and identified three main reasons:
(1) Taint source misidentification, e.g., some functions syntacti-
cally similar to LLM APIs were mistakenly marked as taint sources;
(2) Over-approximation of sinks, such as subprocess.Popen with
shell=False, were flagged even though they are not actually ex-
ploitable; (3) Omission of runtime mitigation mechanisms, where
some static paths are blocked by runtime path validation orwhitelist-
ing. These findings indicate that while TaintP2X maintains high
recall, it also effectively controls FPs, underscoring its strong engi-
neering practicality.

To account for the hallucination and uncertainty often associated
with LLMs, we further conducted a comprehensive evaluation of
the robustness of LLM-assisted analysis. Specifically, we conducted
an experiment involving a manual audit of 100 randomly sampled
taint paths identified and pruned by the LLM-assisted modules (M1
andM4). Three independent security experts reviewed the results to
establish ground-truth benchmarks for validation. The inter-rater
agreement between the human auditors and the LLM outputs, mea-
sured using Cohen’s 𝜅 coefficient, reached 0.85, indicating a high
level of consistency and reliability in identifying valid taint paths
and pruning FPs. Furthermore, we performed additional experi-
ments to assess the robustness of TaintP2X under different LLM
architectures and prompting strategies. Using OpenAI’s GPT-3.5,
GPT-4, and Anthropic’s Claude, we observed module-level consis-
tency exceeding 96% for M1 and 91% for M4, demonstrating that
the LLM-assisted components yield stable and reproducible results
across distinct model architectures. Regarding prompting strate-
gies, we evaluated zero-shot, few-shot, and chain-of-thought (CoT)
prompting variants, achieving an overall consistency of 94.12%,
thereby confirming the robustness of the LLM-assisted analysis.

4.4.2 RQ3.2: Vulnerability Type Coverage and Community Feed-
back. Regarding vulnerability type coverage, TaintP2X supports
detection of multiple critical vulnerability classes, including code
injection (e.g., exec, subprocess.run), arbitrary file access, SSRF,
and SQL injection. Empirical analysis shows a significantly higher

Table 4: Sink Function Calls by Vulnerability Type.

Vulnerability Type Sink Function # Calls

Code Injection

exec 31
eval 19
subprocess.run 16
os.system 3
subprocess.call 2
subprocess.Popen.__init__ 1
importlib.import_module 2

SQL Injection sqlite_utils.Database.query 1

File Operations open 15

SSRF requests.api.get 9

Data Leakage email.message.Message.attach 2

number of sinks related to code injection issues, reflecting the wide-
spread exposure of such risks in contemporary large model applica-
tions, as presented in Table 4. To verify the exploitability of potential
vulnerabilities, we selected high-confidence paths generated by the
system and submitted them to relevant open-source developers.
Among the 40 submitted issues, 7 were confirmed by maintainers,
and some projects have initiated remediation efforts. Unsubmitted
issues were mainly due to existing security advisories or documen-
tation, low-impact vulnerabilities (e.g., access to non-sensitive local
files), or vulnerabilities located within test or demonstration code
not affecting production environments.

4.4.3 Case Study#1: Prompt-to-Code-Injection in ComfyUI. To fur-
ther understand the practical risk of prompt-to-code injection in
real-world LLM-integrated systems, we first perform a case study
on a vulnerability in the AnyNode component of ComfyUI. This mod-
ule allows end users to dynamically execute LLM-generated Python
code via a visual workflow. As illustrated in Listing 1, the internal ex-
ecution flow translates user-provided prompts into Python scripts,
which are then executed within the host environment. Although
a blacklist-based CodeSanitizer is applied during the safe_exec
stage to filter prohibited APIs (e.g., eval, exec, input, open), its cov-
erage is incomplete. As the code snippet shows, the LLM response
(r) is directly incorporated into self.script after extraction, and
the sanitized script is eventually executed via exec. Because only a
narrow set of APIs is covered by the blacklist and key primitives
(e.g., io.FileIO) are not included, an adversarial prompt can steer
the LLM to produce code that is semantically dangerous yet syntac-
tically compliant with the sanitizer’s rules. In our proof-of-concept,
the generated script used alternative filesystem APIs to create a file
/pwn containing the string hacked, confirming that an attacker can
gain write access to the underlying file system. This case demon-
strates that blacklist-based sanitization is insufficient in protecting
LLM-integrated systems. A more robust design would replace black-
list filtering with a conservative, whitelist-based policy or execute
LLM-generated code inside a constrained sandbox.

4.4.4 Case Study#2: Prompt-to-File-Write in gpt-engineer. We
further conduct a case study on a prompt-to-file-write vulnerability
in gpt-engineer, a framework that enables LLMs to modify local

ICSE ’26, April 12–18, 2026, Rio de Janeiro, Brazil Junjie He et al.

Listing 1: Prompt-to-Code-Injection in ComfyUI.

1 class CodeSanitizer(ast.NodeVisitor):
2 def __init__(self):
3 self.dangerous_constructs = [
4 'eval', 'exec', 'input ', '__import__ ', 'os',

'subprocess ', 'shutil ', 'sys', 'compile '
5]
6
7 def go(self , prompt , ...):
8 if need_generation(prompt):
9 final_template = self.render_template(

SYSTEM_TEMPLATE , ...)
10 r = self.get_llm_response(prompt , ...)
11 self.script = self.extract_code_block(r)
12
13 self.safe_exec(modified_script , globals_dict ,

locals_dict)
14
15 exec(sanitize_code(code_string), globals_dict ,

locals_dict)
16
17 def sanitize_code(code):
18 tree = ast.parse(code)
19 sanitizer = CodeSanitizer ()
20 sanitizer.visit(tree)

Listing 2: Prompt-to-File-Write in gpt-engineer

1 goal = get_user_goal ()
2
3 files = llm_select_files_and_instructions(goal)
4
5 for file in files:
6 path = ensure_prefix("/tmp/repo/", file["path"])
7
8 content = read_file(path) # open(path , "r")
9
10 resp = llm_edit_code(messages=build_messages(content ,

goal),functions =["edit_repo_file"])
11
12 if resp.function_call.name == "edit_repo_file":
13 changes = json_loads(resp.function_call.arguments

)["changes"]
14 apply_line_changes(path , changes)
15 # open(path , "w")
16 else:
17 log_error("No function call found")

codebases autonomously. As shown in Listing 2, it takes a natural-
language goal, lets the LLM select target files and edits, and then ap-
plies these edits directly to the filesystem. Although gpt-engineer
attempts to constrain modifications to the /tmp/repo/ workspace
through path prefixing, this mechanism is applied before path nor-
malization and therefore fails to sanitize path traversal attacks.
As a result, a prompt can induce the LLM to output paths such
as /tmp/repo/../../root/hacked.txt that pass the prefix check
but, after normalization by the underlying OS, resolve outside the
designated workspace. In our proof-of-concept, this allowed an
LLM-generated function call to create /root/hacked.txt contain-
ing the string hacked, demonstrating a prompt-to-file-write primi-
tive that escapes the intended file boundary. This case reveals that
robust protection in LLM-integrated applications requires resolving
paths to a canonical form, enforcing workspace membership on the
normalized path, and introducing human-in-the-loop approval for
LLM-suggested file operations.

5 DISCUSSION

Mitigation. Recent advances in mitigating P2Xi vulnerabilities
within LLM-based applications can be broadly divided into three
main approaches. First, confirmation mechanisms require explicit
human approval before executing sensitive actions [44]. Second,
input/output filtering systems attempt to detect and block mali-
cious content during the prompt construction and model output
phases [23]. Third, tool isolation strategies restrict the LLM to in-
teracting only with a predefined set of tools, while a system-level
controller disables all non-whitelisted capabilities [6]. Although
these strategies establish a basic level of security, each presents
significant limitations. Confirmation mechanisms often undermine
system automation and usability, and fatigued or inattentive review-
ers may inadvertently approve unsafe actions. Filter-based defenses
are generally heuristic in nature, and thus cannot guarantee com-
prehensive coverage against adaptive or obfuscated attack patterns.
Tool isolation, though more rigorous, introduces implementation
complexity and does not eliminate the risk that even approved tools
might be misused for malicious purposes. Moreover, we observe
that a significant portion of developers have not implemented any
security countermeasures at all. This highlights an urgent need to
promote security-conscious development practices to ensure LLM
applications are robust against P2Xi attacks.
Generalizability and Scalability. The design of TaintP2X is in-
herently language-agnostic and highly extensible. Since the core
workflow only relies on taint propagation traces extracted from
static analysis tools, the approach can be readily adapted to other
programming languages, provided that suitable static analysis back-
ends are available. Furthermore, the general capability of LLMs to
semantically interpret multiple languages [32] enhances the sys-
tem’s applicability across diverse ecosystems. In addition, the cur-
rent evaluation focuses on high-profile repositories with sufficient
community attention (e.g., star thresholds), but the analysis frame-
work can be naturally scaled to a broader corpus of LLM-powered
applications. This includes systematic scanning of all public reposi-
tories on platforms such as GitHub, thereby enabling large-scale,
ecosystem-wide assessment of P2Xi vulnerabilities.
Limitations. Despite the strong performance of TaintP2X in de-
tecting P2Xi vulnerabilities, several limitations remain. Firstly, the
detection capability is inherently limited by the underlying static
analysis engine, which struggles to capture implicit taint propaga-
tion through mechanisms such as reflection, dynamic imports, or
runtime code generation. These techniques are frequently encoun-
tered in real-world LLM applications [16]. Incorporating dynamic
or hybrid analysis techniques in future work could help address
these blind spots. Secondly, the empirical evaluation is conducted
on a curated set of open-source projects with relatively high com-
munity visibility (e.g., selected by GitHub star count). This sampling
strategy may exclude vulnerabilities present in long-tail or emerg-
ing projects. A broader, star-agnostic analysis across the GitHub
ecosystem is necessary to obtain a more representative assessment
of LLM-integrated application security. Thirdly, TaintP2X cur-
rently only supports Python-based projects. While Python remains
the dominant language in the LLM application domain, extending
support to additional languages, such as JavaScript, TypeScript,
or Rust, would enhance the generalizability and practical utility

TaintP2X: Detecting Taint-Style Prompt-to-Anything Injection Vulnerabilities in LLM-Integrated Applications ICSE ’26, April 12–18, 2026, Rio de Janeiro, Brazil

of the system. Finally, although TaintP2X achieves a high recall
rate, the false positive rate remains relatively high. Future work
could explore more advanced prompt engineering techniques [49],
constraint propagation, or symbolic reasoning [35] to improve pre-
cision while maintaining broad vulnerability coverage.

6 RELATEDWORK

With the integration of LLMs into key tasks such as natural lan-
guage processing, code generation, and dialogue systems, their
security risks have garnered increasing attention. Existing research
primarily focuses on the following three areas:
Evaluating intrinsic model safety. For model evaluation, various
high-coverage safety benchmarks have been proposed. SafetyBench
[47] provides over 11,000 multiple-choice questions across seven
risk categories for fine-grained robustness assessment. ALERT [37]
constructs over 45,000 red-teaming prompts and incorporates a
detailed risk taxonomy to simulate overreach and data leakage
scenarios. Lightweight test suites such as SimpleSafetyTests [38]
and context-adaptive alignment methods like SafeInfer [1] fur-
ther strengthen practical safety evaluations. Cybersecurity-focused
benchmarks, including CyberSecEval 2 [2], SECURE [3], and CS-
Eval [46], expand the evaluation scope to include prompt injection,
code interpreter abuse, and multimodal attack vectors.
Modeling and executing adversarial prompt attacks. In adver-
sarial prompting, studies demonstrate that carefully crafted input
sequences can induce unauthorized or harmful outputs without
requiring access to model weights. Common attack types include
prompt injection, contextual poisoning, and CoT hijacking. Repre-
sentative works include indirect prompt injection by Greshake et
al. [10], black-box jailbreaks across popular LLM applications [22],
and cross-model transferable adversarial prompts [50].
Designing robust defense mechanisms. To mitigate such at-
tacks, multi-level defense strategies have been proposed, including
adversarial training, input purification (e.g., LLAMOS [19]), output
screening (e.g., LLM Self Defense [29]), and ontology-driven assur-
ance (e.g., [24]). Modal-specific frameworks like SpeechGuard [28]
enhance robustness in voice-based input scenarios. Some works
have also explored proactive countermeasures, exploiting the attack
model’s bias and memory limitations for misdirection.

Although significant progress has been made in model-level
security evaluation and defense, there remains a gap in system-
atic detection methods for system-level vulnerabilities caused by
prompt injection, such as RCE and SQL injection. LLMSmith[21]
proposed a lightweight approach that combines static analysis with
white-box/black-box testing to identify injection risks in frame-
work source code. Building on this, AgentFuzz[8] introduced a
targeted gray-box fuzzing technique to detect taint-style vulnerabil-
ities in LLM-based agent systems. Pedro et al. [27] further revealed
prompt-to-SQL injection (P2SQL) attack paths in frameworks like
LangChain and LlamaIndex. However, existingmethods are predom-
inantly attack-specific and lack unified modeling across different
prompt injection variants. Moreover, their reliance on dynamic
analysis constrains scalability when applied to large codebases.
TaintP2X addresses these limitations by providing a comprehen-
sive static tool that generalizes across P2Xi vulnerabilities while
maintaining practical scalability for real-world applications.

7 CONCLUSION

In this paper, we present TaintP2X, a static taint analysis frame-
work for detecting P2Xi vulnerabilities in LLM-integrated appli-
cations. We formalize existing attack patterns into a unified para-
digm, identifying implicit trust in LLM outputs as the fundamental
vulnerability. TaintP2X extends conventional taint tracking by
treating LLM-generated content as user-influenced sources and
incorporates semantic validation to reduce FPs. Our evaluation on
35 known vulnerabilities and 4,772 GitHub repositories demon-
strates TaintP2X’s effectiveness, detecting 101 valid taint paths
and revealing previously unknown vulnerabilities confirmed by
developers. These findings highlight the widespread prevalence of
P2Xi risks and underscore the need for automated security auditing
in LLM-integrated applications.

ACKNOWLEDGMENT

This work was supported in part by the National Natural Science
Foundation of China (grants No.62572209, 62502168) and the Hubei
Provincial Key Research and Development Program (grant No.
2025BAB057).

REFERENCES

[1] Somnath Banerjee, Sayan Layek, Soham Tripathy, Shanu Kumar, Animesh
Mukherjee, and Rima Hazra. 2024. SafeInfer: Context Adaptive Decoding
Time Safety Alignment for Large Language Models. arXiv:2406.12274 [cs.CL]
https://arxiv.org/abs/2406.12274

[2] Manish Bhatt, Sahana Chennabasappa, Yue Li, Cyrus Nikolaidis, Daniel Song,
Shengye Wan, Faizan Ahmad, Cornelius Aschermann, Yaohui Chen, Dhaval
Kapil, David Molnar, Spencer Whitman, and Joshua Saxe. 2024. CyberSecEval
2: A Wide-Ranging Cybersecurity Evaluation Suite for Large Language Models.
arXiv:2404.13161 [cs.CR] https://arxiv.org/abs/2404.13161

[3] Dipkamal Bhusal, Md Tanvirul Alam, Le Nguyen, Ashim Mahara, Zachary Light-
cap, Rodney Frazier, Romy Fieblinger, Grace Long Torales, Benjamin A. Blakely,
and Nidhi Rastogi. 2024. SECURE: Benchmarking Large Language Models for Cy-
bersecurity. In 2024 Annual Computer Security Applications Conference (ACSAC).
15–30. https://doi.org/10.1109/ACSAC63791.2024.00019

[4] The MITRE Corporation. 2018. CAPEC-23: File Content Injection. https:
//capec.mitre.org/data/definitions/23.html Accessed: 2025-07-09.

[5] CrewAI. 2025. Tools: CrewAI Documentation. https://docs.crewai.com/en/
concepts/tools. Accessed: 2025-07-09.

[6] Edoardo Debenedetti, Jie Zhang, Mislav Balunović, Luca Beurer-Kellner, Marc Fis-
cher, and Florian Tramèr. 2024. AgentDojo: A Dynamic Environment to Evaluate
Prompt Injection Attacks and Defenses for LLMAgents. arXiv:2406.13352 [cs.CR]
https://arxiv.org/abs/2406.13352

[7] Hugging Face. 2023. Function Calling: Hugging Face Documentation. https:
//huggingface.co/docs/hugs/guides/function-calling#best-practices. Accessed:
2025-07-09.

[8] Liu Fengyu. 2025. Make Agent Defeat Agent: Automatic Detection of Taint-Style
Vulnerabilities in LLM-based Agents. https://doi.org/10.5281/zenodo.15590097

[9] Github. 2025. GithubAdvisory Database. https://github.com/advisories. Accessed:
2025-07-09.

[10] Kai Greshake, Sahar Abdelnabi, Shailesh Mishra, Christoph Endres, Thorsten
Holz, and Mario Fritz. 2023. Not what you’ve signed up for: Compromis-
ing Real-World LLM-Integrated Applications with Indirect Prompt Injection.
arXiv:2302.12173 [cs.CR] https://arxiv.org/abs/2302.12173

[11] Xinyi Hou, Yanjie Zhao, Yue Liu, Zhou Yang, Kailong Wang, Li Li, Xiapu Luo,
David Lo, John Grundy, and Haoyu Wang. 2024. Large Language Models for
Software Engineering: A Systematic Literature Review. ACM Trans. Softw. Eng.
Methodol. 33, 8, Article 220 (Dec. 2024), 79 pages. https://doi.org/10.1145/3695988

[12] Jie Huang and Kevin Chen-Chuan Chang. 2023. Towards Reasoning in Large
Language Models: A Survey. In Findings of the Association for Computational
Linguistics: ACL 2023, Toronto, Canada, July 9-14, 2023, Anna Rogers, Jordan L.
Boyd-Graber, and Naoaki Okazaki (Eds.). Association for Computational Linguis-
tics, 1049–1065. https://doi.org/10.18653/V1/2023.FINDINGS-ACL.67

[13] huntr. 2025. The world’s first bug bounty platform for AI/ML. https://huntr.com/.
Accessed: 2025-07-09.

[14] Haolin Jin, Linghan Huang, Haipeng Cai, Jun Yan, Bo Li, and Huaming Chen.
2024. From LLMs to LLM-based Agents for Software Engineering: A Survey of

https://arxiv.org/abs/2406.12274
https://arxiv.org/abs/2406.12274
https://arxiv.org/abs/2404.13161
https://arxiv.org/abs/2404.13161
https://doi.org/10.1109/ACSAC63791.2024.00019
https://capec.mitre.org/data/definitions/23.html
https://capec.mitre.org/data/definitions/23.html
https://docs.crewai.com/en/concepts/tools
https://docs.crewai.com/en/concepts/tools
https://arxiv.org/abs/2406.13352
https://arxiv.org/abs/2406.13352
https://huggingface.co/docs/hugs/guides/function-calling#best-practices
https://huggingface.co/docs/hugs/guides/function-calling#best-practices
https://doi.org/10.5281/zenodo.15590097
https://github.com/advisories
https://arxiv.org/abs/2302.12173
https://arxiv.org/abs/2302.12173
https://doi.org/10.1145/3695988
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.67
https://huntr.com/

ICSE ’26, April 12–18, 2026, Rio de Janeiro, Brazil Junjie He et al.

Current, Challenges and Future. CoRR abs/2408.02479 (2024). https://doi.org/10.
48550/ARXIV.2408.02479 arXiv:2408.02479

[15] Md. Monjurul Karim, Dong Hoang Van, Sangeen Khan, Qiang Qu, and Yaroslav
Kholodov. 2025. AI Agents Meet Blockchain: A Survey on Secure and Scalable
Collaboration for Multi-Agents. Future Internet 17, 2 (2025), 57. https://doi.org/
10.3390/FI17020057

[16] Junhyoung Kim, TaeGuen Kim, and Eul Gyu Im. 2014. Survey of dynamic taint
analysis. In 2014 4th IEEE International Conference on Network Infrastructure and
Digital Content. 269–272. https://doi.org/10.1109/ICNIDC.2014.7000307

[17] LangChain. 2025. Tool Calling: LangChain Documentation. https://python.
langchain.com/docs/concepts/tool_calling/. Accessed: 2025-07-09.

[18] Zenan Li, Yuan Yao, Xiaoxing Ma, and Jian Lv. 2025. Neuro-symbolic systems: a
perspective of uncertainty management. SCIENTIA SINICA Informationis 55, 1
(2025), 1–. https://doi.org/10.1360/SSI-2024-0163

[19] Guang Lin, Toshihisa Tanaka, and Qibin Zhao. 2025. Large Language Model
Sentinel: LLM Agent for Adversarial Purification. arXiv:2405.20770 [cs.CL]
https://arxiv.org/abs/2405.20770

[20] Junwei Liu, Kaixin Wang, Yixuan Chen, Xin Peng, Zhenpeng Chen, Lingming
Zhang, and Yiling Lou. 2024. Large Language Model-Based Agents for Software
Engineering: A Survey. CoRR abs/2409.02977 (2024). https://doi.org/10.48550/
ARXIV.2409.02977 arXiv:2409.02977

[21] Tong Liu, Zizhuang Deng, Guozhu Meng, Yuekang Li, and Kai Chen. 2024. De-
mystifying RCE Vulnerabilities in LLM-Integrated Apps. In Proceedings of the
2024 on ACM SIGSAC Conference on Computer and Communications Security (Salt
Lake City, UT, USA) (CCS ’24). Association for Computing Machinery, New York,
NY, USA, 1716–1730. https://doi.org/10.1145/3658644.3690338

[22] Yi Liu, Gelei Deng, Yuekang Li, Kailong Wang, Zihao Wang, Xiaofeng Wang,
Tianwei Zhang, Yepang Liu, HaoyuWang, Yan Zheng, and Yang Liu. 2024. Prompt
Injection attack against LLM-integrated Applications. arXiv:2306.05499 [cs.CR]
https://arxiv.org/abs/2306.05499

[23] Bettina Messmer, Vinko Sabolčec, andMartin Jaggi. 2025. EnhancingMultilingual
LLM Pretraining with Model-Based Data Selection. arXiv:2502.10361 [cs.CL]
https://arxiv.org/abs/2502.10361

[24] Tomas Bueno Momcilovic, Beat Buesser, Giulio Zizzo, Mark Purcell, and Dian
Balta. 2024. Towards Assurance of LLM Adversarial Robustness using Ontology-
DrivenArgumentation. arXiv:2410.07962 [cs.AI] https://arxiv.org/abs/2410.07962

[25] Daye Nam, Andrew Macvean, Vincent Hellendoorn, Bogdan Vasilescu, and Brad
Myers. 2024. Using an LLM to Help With Code Understanding. In Proceedings
of the IEEE/ACM 46th International Conference on Software Engineering (Lisbon,
Portugal) (ICSE ’24). Association for Computing Machinery, New York, NY, USA,
Article 97, 13 pages. https://doi.org/10.1145/3597503.3639187

[26] NVD. 2025. National Vulnerability Database. https://nvd.nist.gov/vuln/search.
Accessed: 2025-07-09.

[27] Rodrigo Pedro, Miguel E. Coimbra, Daniel Castro, Paulo Carreira, and Nuno
Santos. 2025. Prompt-to-SQL Injections in LLM-Integrated Web Applications:
Risks and Defenses . In 2025 IEEE/ACM 47th International Conference on Software
Engineering (ICSE). IEEE Computer Society, Los Alamitos, CA, USA, 1768–1780.
https://doi.org/10.1109/ICSE55347.2025.00007

[28] Raghuveer Peri, Sai Muralidhar Jayanthi, Srikanth Ronanki, Anshu Bhatia, Karel
Mundnich, Saket Dingliwal, Nilaksh Das, Zejiang Hou, Goeric Huybrechts,
Srikanth Vishnubhotla, Daniel Garcia-Romero, Sundararajan Srinivasan, Kyu J
Han, and Katrin Kirchhoff. 2024. SpeechGuard: Exploring the Adversarial Ro-
bustness of Multimodal Large Language Models. arXiv:2405.08317 [cs.CL]
https://arxiv.org/abs/2405.08317

[29] Mansi Phute, Alec Helbling, Matthew Hull, ShengYun Peng, Sebastian Szyller,
Cory Cornelius, and Duen Horng Chau. 2024. LLM Self Defense: By Self Ex-
amination, LLMs Know They Are Being Tricked. arXiv:2308.07308 [cs.CL]
https://arxiv.org/abs/2308.07308

[30] Security PRIDE. 2025. TaintP2X. https://github.com/security-pride/TaintP2X/
blob/main/Taint_Propagation/taint/llm_sources.xlsx. Accessed: 2025-07-09.

[31] Bowen Qin, Binyuan Hui, Lihan Wang, Min Yang, Jinyang Li, Binhua Li,
Ruiying Geng, Rongyu Cao, Jian Sun, Luo Si, Fei Huang, and Yongbin Li.
2022. A Survey on Text-to-SQL Parsing: Concepts, Methods, and Future Direc-
tions. CoRR abs/2208.13629 (2022). https://doi.org/10.48550/ARXIV.2208.13629
arXiv:2208.13629

[32] Libo Qin, Qiguang Chen, Yuhang Zhou, Zhi Chen, Yinghui Li, Lizi Liao, Min
Li, Wanxiang Che, and Philip S. Yu. 2024. Multilingual Large Language Model:
A Survey of Resources, Taxonomy and Frontiers. arXiv:2404.04925 [cs.CL]
https://arxiv.org/abs/2404.04925

[33] Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin
Cong, Xiangru Tang, Bill Qian, Sihan Zhao, Lauren Hong, Runchu Tian, Ruobing
Xie, Jie Zhou, Mark Gerstein, Dahai Li, Zhiyuan Liu, and Maosong Sun. 2024.
ToolLLM: Facilitating Large Language Models to Master 16000+ Real-world APIs.
In The Twelfth International Conference on Learning Representations, ICLR 2024,
Vienna, Austria, May 7-11, 2024. OpenReview.net. https://openreview.net/forum?

id=dHng2O0Jjr
[34] Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta Raileanu, Maria Lomeli,

Eric Hambro, Luke Zettlemoyer, Nicola Cancedda, and Thomas Scialom. 2023.
Toolformer: Language Models Can Teach Themselves to Use Tools. In Advances
in Neural Information Processing Systems 36: Annual Conference on Neural Infor-
mation Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December
10 - 16, 2023, Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz
Hardt, and Sergey Levine (Eds.). http://papers.nips.cc/paper_files/paper/2023/
hash/d842425e4bf79ba039352da0f658a906-Abstract-Conference.html

[35] Yuqiang Sun, Daoyuan Wu, Yue Xue, Han Liu, Wei Ma, Lyuye Zhang, Yang Liu,
and Yingjiu Li. 2025. LLM4Vuln: A Unified Evaluation Framework for Decoupling
and Enhancing LLMs’ Vulnerability Reasoning. arXiv:2401.16185 [cs.CR] https:
//arxiv.org/abs/2401.16185

[36] Qwen Team. 2024. Function Calling: Qwen Documentation. https://qwen.
readthedocs.io/en/latest/framework/function_call.html. Accessed: 2025-07-09.

[37] Simone Tedeschi, Felix Friedrich, Patrick Schramowski, Kristian Kersting, Roberto
Navigli, Huu Nguyen, and Bo Li. 2024. ALERT: A Comprehensive Bench-
mark for Assessing Large Language Models’ Safety through Red Teaming.
arXiv:2404.08676 [cs.CL] https://arxiv.org/abs/2404.08676

[38] Bertie Vidgen, Nino Scherrer, Hannah Rose Kirk, Rebecca Qian, Anand Kannap-
pan, Scott A. Hale, and Paul Röttger. 2024. SimpleSafetyTests: a Test Suite for Iden-
tifying Critical Safety Risks in Large Language Models. arXiv:2311.08370 [cs.CL]
https://arxiv.org/abs/2311.08370

[39] Shaw Walters, Sam Gao, Shakker Nerd, Feng Da, Warren Williams, Ting-Chien
Meng, Amie Chow, Hunter Han, Frank He, Allen Zhang, MingWu, Timothy Shen,
Maxwell Hu, and Jerry Yan. 2025. Eliza: A Web3 friendly AI Agent Operating
System. CoRR abs/2501.06781 (2025). https://doi.org/10.48550/ARXIV.2501.06781
arXiv:2501.06781

[40] Junyang Wang, Haiyang Xu, Haitao Jia, Xi Zhang, Ming Yan, Weizhou
Shen, Ji Zhang, Fei Huang, and Jitao Sang. 2024. Mobile-Agent-v2: Mo-
bile Device Operation Assistant with Effective Navigation via Multi-Agent
Collaboration. In Advances in Neural Information Processing Systems 38: An-
nual Conference on Neural Information Processing Systems 2024, NeurIPS 2024,
Vancouver, BC, Canada, December 10 - 15, 2024, Amir Globersons, Lester
Mackey, Danielle Belgrave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak,
and Cheng Zhang (Eds.). http://papers.nips.cc/paper_files/paper/2024/hash/
0520537ba799d375b8ff5523295c337a-Abstract-Conference.html

[41] Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao Yang, Jingsen Zhang,
Zhiyuan Chen, Jiakai Tang, Xu Chen, Yankai Lin, Wayne Xin Zhao, Zhewei Wei,
and Jirong Wen. 2024. A survey on large language model based autonomous
agents. Frontiers Comput. Sci. 18, 6 (2024), 186345. https://doi.org/10.1007/S11704-
024-40231-1

[42] IreneWeber. 2024. Large LanguageModels as Software Components: A Taxonomy
for LLM-Integrated Applications. CoRR abs/2406.10300 (2024). https://doi.org/
10.48550/ARXIV.2406.10300 arXiv:2406.10300

[43] Liangxuan Wu, Chao Wang, Tianming Liu, Yanjie Zhao, and Haoyu Wang. 2025.
From Assistants to Adversaries: Exploring the Security Risks of Mobile LLM
Agents. CoRR abs/2505.12981 (2025). https://doi.org/10.48550/ARXIV.2505.12981
arXiv:2505.12981

[44] Yuhao Wu, Franziska Roesner, Tadayoshi Kohno, Ning Zhang, and Umar Iqbal.
2025. IsolateGPT: An Execution Isolation Architecture for LLM-Based Agentic
Systems. arXiv:2403.04960 [cs.CR] https://arxiv.org/abs/2403.04960

[45] Chunqiu Steven Xia, Yinlin Deng, Soren Dunn, and Lingming Zhang. 2025. De-
mystifying LLM-Based Software Engineering Agents. Proc. ACM Softw. Eng. 2,
FSE, Article FSE037 (June 2025), 24 pages. https://doi.org/10.1145/3715754

[46] Zhengmin Yu, Jiutian Zeng, Siyi Chen, Wenhan Xu, Dandan Xu, Xiangyu
Liu, Zonghao Ying, Nan Wang, Yuan Zhang, and Min Yang. 2025. CS-
Eval: A Comprehensive Large Language Model Benchmark for CyberSecurity.
arXiv:2411.16239 [cs.CR] https://arxiv.org/abs/2411.16239

[47] Zhexin Zhang, Leqi Lei, Lindong Wu, Rui Sun, Yongkang Huang, Chong Long,
Xiao Liu, Xuanyu Lei, Jie Tang, and Minlie Huang. 2024. SafetyBench: Evaluating
the Safety of Large Language Models. In Proceedings of the 62nd Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), Lun-Wei
Ku, Andre Martins, and Vivek Srikumar (Eds.). Association for Computational
Linguistics, Bangkok, Thailand, 15537–15553. https://doi.org/10.18653/v1/2024.
acl-long.830

[48] Yanjie Zhao, Xinyi Hou, Shenao Wang, and Haoyu Wang. 2025. LLM App Store
Analysis: A Vision and Roadmap. ACM Trans. Softw. Eng. Methodol. 34, 5, Article
125 (May 2025), 25 pages. https://doi.org/10.1145/3708530

[49] Xin Zhou, Ting Zhang, and David Lo. 2024. Large Language Model for Vulnerabil-
ity Detection: Emerging Results and Future Directions. arXiv:2401.15468 [cs.SE]
https://arxiv.org/abs/2401.15468

[50] Andy Zou, Zifan Wang, J. Z. Kolter, and Matt Fredrikson. 2023. Universal
and Transferable Adversarial Attacks on Aligned Language Models. ArXiv
abs/2307.15043 (2023).

https://doi.org/10.48550/ARXIV.2408.02479
https://doi.org/10.48550/ARXIV.2408.02479
https://arxiv.org/abs/2408.02479
https://doi.org/10.3390/FI17020057
https://doi.org/10.3390/FI17020057
https://doi.org/10.1109/ICNIDC.2014.7000307
https://python.langchain.com/docs/concepts/tool_calling/
https://python.langchain.com/docs/concepts/tool_calling/
https://doi.org/10.1360/SSI-2024-0163
https://arxiv.org/abs/2405.20770
https://arxiv.org/abs/2405.20770
https://doi.org/10.48550/ARXIV.2409.02977
https://doi.org/10.48550/ARXIV.2409.02977
https://arxiv.org/abs/2409.02977
https://doi.org/10.1145/3658644.3690338
https://arxiv.org/abs/2306.05499
https://arxiv.org/abs/2306.05499
https://arxiv.org/abs/2502.10361
https://arxiv.org/abs/2502.10361
https://arxiv.org/abs/2410.07962
https://arxiv.org/abs/2410.07962
https://doi.org/10.1145/3597503.3639187
https://nvd.nist.gov/vuln/search
https://doi.org/10.1109/ICSE55347.2025.00007
https://arxiv.org/abs/2405.08317
https://arxiv.org/abs/2405.08317
https://arxiv.org/abs/2308.07308
https://arxiv.org/abs/2308.07308
https://github.com/security-pride/TaintP2X/blob/main/Taint_Propagation/taint/llm_sources.xlsx
https://github.com/security-pride/TaintP2X/blob/main/Taint_Propagation/taint/llm_sources.xlsx
https://doi.org/10.48550/ARXIV.2208.13629
https://arxiv.org/abs/2208.13629
https://arxiv.org/abs/2404.04925
https://arxiv.org/abs/2404.04925
https://openreview.net/forum?id=dHng2O0Jjr
https://openreview.net/forum?id=dHng2O0Jjr
http://papers.nips.cc/paper_files/paper/2023/hash/d842425e4bf79ba039352da0f658a906-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/d842425e4bf79ba039352da0f658a906-Abstract-Conference.html
https://arxiv.org/abs/2401.16185
https://arxiv.org/abs/2401.16185
https://arxiv.org/abs/2401.16185
https://qwen.readthedocs.io/en/latest/framework/function_call.html
https://qwen.readthedocs.io/en/latest/framework/function_call.html
https://arxiv.org/abs/2404.08676
https://arxiv.org/abs/2404.08676
https://arxiv.org/abs/2311.08370
https://arxiv.org/abs/2311.08370
https://doi.org/10.48550/ARXIV.2501.06781
https://arxiv.org/abs/2501.06781
http://papers.nips.cc/paper_files/paper/2024/hash/0520537ba799d375b8ff5523295c337a-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/0520537ba799d375b8ff5523295c337a-Abstract-Conference.html
https://doi.org/10.1007/S11704-024-40231-1
https://doi.org/10.1007/S11704-024-40231-1
https://doi.org/10.48550/ARXIV.2406.10300
https://doi.org/10.48550/ARXIV.2406.10300
https://arxiv.org/abs/2406.10300
https://doi.org/10.48550/ARXIV.2505.12981
https://arxiv.org/abs/2505.12981
https://arxiv.org/abs/2403.04960
https://arxiv.org/abs/2403.04960
https://doi.org/10.1145/3715754
https://arxiv.org/abs/2411.16239
https://arxiv.org/abs/2411.16239
https://doi.org/10.18653/v1/2024.acl-long.830
https://doi.org/10.18653/v1/2024.acl-long.830
https://doi.org/10.1145/3708530
https://arxiv.org/abs/2401.15468
https://arxiv.org/abs/2401.15468

	Abstract
	1 Introduction
	2 Background
	2.1 LLM-integrated Applications
	2.2 Prompt-to-Anything Injection (P2Xi)
	2.3 Problem Statement

	3 Design of TaintP2X
	3.1 Taint Source Identification
	3.2 Taint Propagation
	3.3 LLM-Assisted Pruning

	4 Evaluation
	4.1 Evaluation Setup
	4.2 RQ1: Effectiveness of TaintP2X
	4.3 RQ2: Ablation Study
	4.4 RQ3: Real-World Applicability

	5 Discussion
	6 Related Work
	7 Conclusion
	References

