arXiv:2506.23762v1 [cs.SE] 30 Jun 2025

Software Engineering for Large Language Models: Research
Status, Challenges and the Road Ahead

HONGZHOU RAOQO", Huazhong University of Science and Technology, China
YANJIE ZHAQO", Huazhong University of Science and Technology, China
XINYI HOU, Huazhong University of Science and Technology, China
SHENAO WANG, Huazhong University of Science and Technology, China
HAOYU WANGT, Huazhong University of Science and Technology, China

The rapid advancement of large language models (LLMs) has redefined artificial intelligence (AI), pushing the
boundaries of Al research and enabling unbounded possibilities for both academia and the industry. However,
LLM development faces increasingly complex challenges throughout its lifecycle, yet no existing research
systematically explores these challenges and solutions from the perspective of software engineering (SE)
approaches. To fill the gap, we systematically analyze research status throughout the LLM development
lifecycle, divided into six phases: requirements engineering, dataset construction, model development and
enhancement, testing and evaluation, deployment and operations, and maintenance and evolution. We then
conclude by identifying the key challenges for each phase and presenting potential research directions to
address these challenges. In general, we provide valuable insights from an SE perspective to facilitate future
advances in LLM development.

1 INTRODUCTION

In recent years, large language models (LLMs) have advanced rapidly, leading to their perfor-
mance exceeding human capabilities in certain domains [93, 307, 316, 329, 457]. Alongside this
progress, emerging technologies such as Al-driven code generation [107, 137, 228, 468], multimodal
models [294, 333], and Al agents [383] are also evolving at an unprecedented pace. These develop-
ments are rapidly expanding the role of LLMs in critical domains such as software development,
healthcare [95, 100, 416], and finance [430, 450]. As LLMs become foundational infrastructure for
general-purpose intelligence [253], ensuring their reliability, efficiency, and adaptability is impor-
tant as well as challenging for the software engineering (SE) community. Therefore, a systematic
investigation into the development and engineering of LLMs is essential.

The development of LLMs is a multifaceted process, from dataset preparation and model
training to deployment and maintenance. SE plays a central role throughout this lifecycle,
offering foundational principles and methodologies to manage complexity, ensure robustness,
and support scalability. These are increasingly embodied in an ecosystem of specialized tools
and frameworks that facilitate each stage of the development process. For instance, Hugging
Face provides tools such as Transformers [105] for model training and the PEFT library [75] for
efficient fine-tuning methods. Micros ft’s DeepSpeed [338] enhances large-scale model training
through deep learning optimizations, while OpenAl offers LLM APIs [266] that enable interaction
with the GPT family models. Additionally, evaluation frameworks like LM-Eval-Harness [72]
and community-driven platforms such as the Open LLM Leaderboard [74] offer standardized
benchmarks. Development toolkits like LangChain [28] modularize and streamline the construction

“Co-first authors who contributed equally to this work.
THaoyu Wang is the corresponding author (haoyuwang@hust.edu.cn).

Authors’ addresses: Hongzhou Rao, rhz@hust.edu.cn, Huazhong University of Science and Technology, Wuhan, China;
Yanjie Zhao, yanjie_zhao@hust.edu.cn, Huazhong University of Science and Technology, Wuhan, China; Xinyi Hou,
xinyihou@hust.edu.cn, Huazhong University of Science and Technology, Wuhan, China; Shenao Wang, shenaowang@
hust.edu.cn, Huazhong University of Science and Technology, Wuhan, China; Haoyu Wang, haoyuwang@hust.edu.cn,
Huazhong University of Science and Technology, Wuhan, China.

, Vol. 1, No. 1, Article . Publication date: July 2025.

https://arxiv.org/abs/2506.23762v1

2 Hongzhou Rao, Yanjie Zhao, Xinyi Hou, Shenao Wang, and Haoyu Wang

of LLM-based applications. These tools embody SE principles and reflect the increasing need for
structured, reliable, and scalable LLM development pipelines.

Beyond model training and development, SE also plays a critical role in optimizing the effi-
ciency and scalability of LLM deployment. We can develop tools that integrate techniques such
as model compression, quantization, and inference optimization to reduce latency and resource
consumption. For example, TensorRT [263] and vLLM [349] employ these techniques to enable
cost-effective and efficient LLM inference in production environments. Furthermore, specialized
protocols like Model Context Protocol (MCP) [14] and Agent-to-Agent (A2A) [335] stan-
dardize interactions between LLM-based agents, tools, and multi-agent systems, ensuring
interoperability and streamlined integration in production pipelines. SE practices play
a crucial role in implementing these protocols, providing structured approaches to develop and
maintain associated SDKs [266], client libraries [28, 105], and server components [246, 339], while
ensuring code quality, reliability, and scalability. In summary, from infrastructure development and
data/model management to deployment and inference acceleration, SE methodologies and tools
continue to shape the rapid evolution and widespread adoption of LLMs.

Despite these advancements, there are unique SE challenges for LLM development. High compu-
tational costs [311, 327], non-deterministic testing [324], and continuous model updates in dynamic
environments [236] demand a re-evaluation of traditional SE practices. Traditional MLOps method-
ologies, initially designed for smaller-scale machine learning (ML) models, are no longer well-suited
for LLMs, necessitating large language model operations (LLMOps) [59]. Furthermore, LLMs devi-
ate from traditional software paradigms: unlike traditional programs that produce deterministic
outputs, LLMs generate responses probabilistically due to their neural network-based reasoning
mechanisms. Additionally, their complex architectures and large scale lead to their outputs being
challenging to explain, making interpretability and debugging far more difficult than in traditional
software systems. These factors highlight the need for engineering solutions to address LLMs’
inherent unpredictability, lack of transparency, and unique operational constraints.

However, we found that extensive research has explored LLM capabilities [126, 380, 471], while
systematic investigations from an SE perspective are still lacking. To address this gap, we present
the first comprehensive study of the SE challenges encountered throughout the LLM
development lifecycle and outline future research directions. Specifically, we categorize the
LLM development lifecycle into six key phases: requirements engineering (RE), dataset construction,
model development and enhancement, testing and evaluation, deployment and operations, and
maintenance and evolution. For each phase, we analyze the current research status to identify key
challenges and propose potential future research directions from an SE perspective.

In summary, our primary contributions are:

e Our work is the first to investigate the role of SE in the development of LLMs, filling the gap
in current research.

o We divide the LLM development lifecycle into six phases and systematically analyze the
scope and significance of SE for LLMs.

e We analyze the latest research on LLMs, identify current challenges, and propose correspond-
ing future research directions.

The remainder of this paper is structured as follows: In §2, we introduce the scope and significance
of SE for LLMs. We then analyze various aspects of LLM development, covering RE (§3), dataset
construction (§4), development and enhancement (§5), testing and evaluation (§6), deployment and
operations (§7), and maintenance and evolution (§8), as illustrated in Figure 1. Finally, we introduce
the related work in §9 and conclude the paper in §10.

, Vol. 1, No. 1, Article . Publication date: July 2025.

Software Engineering for Large Language Models: Research Status, Challenges and the Road Ahead 3

N
§3 Requirements Engineering

§4.1 Data Quality

§4 Dataset Construction §4.2 Data Security

§5.1 Pre-Training
§5.2 Fine-Tuning

§5 Development and §5.3 Model Integration

Enh t
nhancemen §5.4 Model Compression

Software Engineering for §5.5 PEFT
Large Language Models ||

§6.1 What to Test and Evaluate

N | §6.2 Where to Test and Evaluate

—— §6 Testing and Evaluation
§6.3 How to Test and Evaluate

§7.1 Cluster Deployment

N | §7.2 Edge Deployment

—— §7 Deployment and Operations

§7.3 Hybrid Deployment

—‘ §8 Maintenance and Evolution 7

Fig. 1. Phase Organization Overview for the LLM Development Lifecycle.

2 SCOPE AND SIGNIFICANCE

In this section, we introduce the scope of SE for LLMs in §2.1 and its significance in §2.2.

2.1 Scope

As summarized in Table 1, we can see that LLMs share similarities with traditional software while
also exhibiting differences. Unlike traditional software, LLMs are built upon neural network archi-
tectures, resulting in non-deterministic outputs for identical inputs. Additionally, they differ from
traditional software in terms of executability and testing methodologies. Despite these differences,
LLMs retain many characteristics of traditional software. Given these hybrid characteristics, SE
methodologies can be applied to enhance LLM in phases such as development, deployment, and
maintenance. To systematically investigate this intersection, we explore how SE methodologies
support various phases of the LLM development lifecycle, which consists of the phases illustrated
in Figure 2:

o RE. The initial phase of RE for LLMs involves identifying specific performance metrics
(e.g., accuracy, latency, energy consumption) and functional capabilities (e.g., reasoning,
multimodal understanding) that the model is expected to possess, which is typically followed
by a systematic process of requirement refinement, feasibility analysis, and validation to
ensure that the specified goals are both realistic and implementable.

e Dataset construction. Once requirements are established, vast datasets must be prepared
for subsequent pre-training and fine-tuning. The construction of datasets involves data

, Vol. 1, No. 1, Article . Publication date: July 2025.

4 Hongzhou Rao, Yanjie Zhao, Xinyi Hou, Shenao Wang, and Haoyu Wang
(i i i N\ 7 . .
§3 Requirements Engineering §6 Testing and Evaluation N
2 & _, B \ o
—> QL — & —> = lups = g
Requirement Requirement Requirement Requirement ® %}ﬁ + + % nll DI]
Gathering Analysis Specification Validation
I\ Benchmark Benchmark Interdlsmpllnary Automated Results
Building Methodologies Testing Tools
e . AIAS <
§4 Dataset Construction
o o (" §7 Deployment and Operations N
Data Collection =
oocotny 2, gl . oo
] Inference. A ... Inference
Dataset Hub Data Processing Training Datasets (53 @U' <
L) Low-Latency Scheduling) . %
; Collaboration Framework 155}
s ~N Cloud Edge Devices
§5 Development and Enhancement > ﬁ]
Communications ommunications
Enhancement Data Security Framework
v | - Y,
PN '@ L
f 3 Ve - - ~
& —P— —p—>: ﬁ §8 Maintenance and Evolution
Pre-Training Fine-Tuning LLMs | Model Integration
T Deployment Directly ® @ @
L o000 -nl] 3
ES @ “] b -ll]ﬂ
Monitoring Inference Degraded Harmful Performance
Model Compression PEFT System Errors Performance Context Assurance
- / _/

Fig. 2. Detailed Activity Breakdown for the LLM Development Lifecycle.

collection and processing to produce high-quality and secure datasets, as the dataset’s quality
significantly impacts model performance [220]. Harmful data can lead to unintended biases
or malicious content generation.

Development and enhancement. The development of LLMs generally comprises two key
stages: pre-training and fine-tuning. Building an LLM from scratch entails designing and
implementing foundational architectures (e.g., Transformers) and performing large-scale
training, which is a highly complex and resource-intensive engineering undertaking. Fortu-
nately, open-source development frameworks facilitate this process. For example, Hugging
Face Transformers [105] facilitates model pre-training and fine-tuning, making it a main-
stream tool for LLM development. After development, models can undergo further training
to strengthen specific capabilities. Additionally, they can be integrated with tools to evolve
into more advanced LLM agents.

Testing and evaluation. Evaluating an LLM requires comprehensive and systematic testing
to assess its diverse capabilities across different tasks and scenarios. However, due to the
inherent complexity of LLMs and their non-deterministic outputs, traditional software testing
methodologies are often not suitable. When evaluating a model, it is essential to consider
not only basic performance measures but also practical challenges, such as hallucinations,
inconsistent outputs, context sensitivity, and other factors that may impact its reliability.
Therefore, further research is needed to improve evaluation methods for LLMs.
Deployment and operations. Once validated, an LLM can be deployed across various
application scenarios. Some models are hosted in cloud environments and accessed via APIs
(e.g., GPT-4.5 [267], Claude-3.7-Sonnet [13]), while others are deployed on edge devices or
within hybrid edge—cloud setups to achieve low-latency and resource-efficient inference.
However, this diversity in deployment environments introduces new challenges, ranging
from scalability and reliability to resource allocation and system integration. Addressing these

, Vol. 1, No. 1, Article . Publication date: July 2025.

Software Engineering for Large Language Models: Research Status, Challenges and the Road Ahead 5

Table 1. Comparison of Characteristics Between Traditional Software and LLM.

Characteristic | Traditional Software LLM Similarity
Determinism | Producing consistent outputs for the same | Generating probabilistic outputs with inher- Low
inputs. ent variation.

Executability | Executing based on explicit, defined logic. |Processing through neural inference with| Medium
limited transparency.
Maintainability | Maintaining through code modifications and | Improving via fine-tuning, retraining, or data High

debugging. augmentation.

Reusability Reusing code components across different | Adapting pre-trained models for various High
projects. tasks.

Testability Supporting systematic unit and integration | Requiring output-based evaluation with un-| Medium
testing. certainty tolerance.

Scalability Expanding through modular design princi-| Scaling via MoE, LoRA, RAG, and parameter-| High
ples. efficient methods.

Deployability | Requiring platform-specific deployment ap-| Functioning across platforms with similar High
proaches. infrastructure needs.

issues requires strong support from SE practices, such as automated deployment pipelines,
environment-specific optimizations, and real-time monitoring systems.

e Maintenance and evolution. During operation, LLMs require substantial computational
resources and may encounter issues such as performance degradation, inference errors, or
the need for retraining and knowledge updates. Therefore, LLMs also require systematic
maintenance, bringing additional challenges beyond those of traditional software systems.

From this lifecycle perspective, it is evident that SE methodologies are deeply integrated into
the construction, deployment, and utilization of LLMs. In dataset construction, specialized tools
facilitate data cleaning and synthesis. Model development relies heavily on existing frameworks,
while model enhancement often involves integrating LLMs with external tools to extend their
functionality. Furthermore, testing, evaluation, and deployment require novel approaches distinct
from traditional SE practices due to challenges such as debugging difficulties, output variability,
and high computational demands. Beyond engineering complexities, LLMs introduce additional
security and ethical concerns. They are vulnerable to adversarial threats, including data poisoning
and prompt injection attacks, and may perpetuate biases inherent in their training data. Addressing
these issues necessitates SE techniques. Overall, SE in LLMs aims to support structured and
efficient development across the full lifecycle—from requirements engineering and dataset
construction to model deployment and maintenance—while also tackling concerns such
as security, ethical responsibilities, and regulatory compliance.

2.2 Significance

LLMs are hard to understand because they have very complex structures and rely heavily on
neural networks to make decisions. This lack of explanation makes it difficult to optimize, test, and
maintain these models over time. They also introduce new security and privacy issues that are
different from those in traditional software. As LLM applications expand across various domains
and industries, these risks become increasingly critical. To address these issues, we require robust
safety measures and transparent development processes. Given these challenges, the application
of SE methodologies can help ensure that LLMs are built, deployed, and maintained reliably and
responsibly while addressing associated security, ethical, and regulatory concerns.

2.2.1 SE for LLM Development. SE provides systematic and automated tools and methodologies to
support the development of LLM, significantly enhancing both efficiency and reliability. Due to

, Vol. 1, No. 1, Article . Publication date: July 2025.

6 Hongzhou Rao, Yanjie Zhao, Xinyi Hou, Shenao Wang, and Haoyu Wang

the massive scale of LLMs and their long training cycles, manually managing parameters, datasets,
and code versions is complex and error-prone. SE methodologies, such as LLMOps pipelines,
automated hyperparameter management tools, and model version control systems (e.g., Weights &
Biases [373]), facilitate automation and standardization in the model development phase. These
tools reduce the likelihood of human error and enhance reproducibility.

Beyond automation, LLM development presents challenges that differ from traditional SE, such as
stability issues during pre-training [337] and catastrophic forgetting during fine-tuning [179]. These
issues can be mitigated through real-time training monitoring and content-detection techniques.
Additionally, SE methodologies help manage the complexities introduced by parameter-efficient
fine-tuning (PEFT). For example, when integrating adapter layers [161] or Low-Rank Adaptation
(LoRA) [118], it is critical to ensure effective management, maintain compatibility between multiple
tasks, and preserve performance stability. The principles of SE, such as modular design and contin-
uous integration (e.g., automated adapter testing and parameter compatibility verification), provide
structured solutions for efficiently managing and securely applying these fine-tuning techniques.

Furthermore, SE plays an essential role in model versioning and iterative upgrades. Automated
tools that compare different model versions help prevent performance degradation and functionality
loss, enabling smoother and more reliable updates. Thus, beyond enhancing development efficiency,
SE methodologies also help address engineering challenges unique to LLMs, facilitating their
continuous improvement and large-scale deployment.

2.2.2 SE for LLM Deployment. SE plays a crucial role in the deployment of LLMs by enabling
efficient model compression [423] and automated deployment tools (e.g., Hugging Face Inference
Endpoints [77]). While LLMs offer superior performance, their substantial computational demands
pose significant challenges for deployment in resource-constrained devices, such as mobile de-
vices and IoT edge devices [58]. SE addresses these challenges by advancing model compression
techniques, including quantization [30], knowledge distillation (KD) [465], and pruning [448], as
well as adapter-based approaches such as LoRA [445] and Prefix-Tuning [191], effectively reducing
parameter size and computational cost. For instance, quantization techniques, such as INT8 [56] and
INT4 [201], enable large models to achieve efficient inference on consumer-grade GPUs and even
mobile devices [427], significantly expanding their applicability. Additionally, the development of
modular and standardized LLM service interfaces (e.g., OpenAlI API [268]) allows developers to
seamlessly deploy and transition between models across diverse environments, thereby reducing
system deployment complexity.

Beyond model optimization, SE also enhances LLM deployment through the development of
standardized interaction protocols, such as MCP [14] for structured tool integration and A2A [335]
communication for multi-agent collaboration. These protocols streamline integration with external
APIs, databases, and distributed AI agents while ensuring interoperability and fault tolerance.
Additionally, the development of modular and standardized LLM service interfaces (e.g., OpenAl
API [268]) allows developers to seamlessly deploy and transition between models across diverse
environments, thereby reducing system deployment complexity.

2.2.3 SE for LLM Maintenance. SE methodologies are essential for the long-term maintenance and
evolution of LLMs. Once deployed, LLMs require continuous updates to incorporate new features,
adapt to evolving business needs, and respond to environmental changes. As the number of model
versions grows, managing version compatibility, tracking dataset evolution [269], and ensuring API
stability [234] become critical challenges. SE addresses these challenges through version control
systems for models and datasets, modular architecture designs (e.g., LoRA adapters), and automated
regression testing frameworks (e.g., LLM-specific continuous integration tools), enabling efficient
tracking of model functionality changes and rapid issue resolution. For instance, when releasing

, Vol. 1, No. 1, Article . Publication date: July 2025.

Software Engineering for Large Language Models: Research Status, Challenges and the Road Ahead 7

new versions of the Gemini [99] and LLaMA [9] families, Google and Meta employ rigorous SE
practices to manage version compatibility, maintain API stability, and ensure seamless migration
for downstream users. These engineering-driven maintenance strategies significantly enhance
model evolution efficiency, ensuring consistent and reliable performance while supporting the
sustained deployment of LLMs.

2.2.4 SE for LLM Security. LLMs process vast amounts of sensitive data during inference and
deployment, particularly in API-based services, raising concerns about data leakage and adver-
sarial attacks (e.g., prompt injection [102, 221], backdoor attacks [217]). SE plays a critical role in
establishing systematic security mechanisms, including secure access control, privacy-preserving
techniques (e.g., differential privacy [27], federated learning [425]), and trusted execution environ-
ments (TEE) [249]. For instance, Azure OpenAl Service [246], as an Al service provider, implements
strict role-based access control (RBAC) to ensure that users can only access authorized data and
functionalities. Concurrently, research efforts are exploring the application of differential privacy
in data processing, as demonstrated by Google’s work [170], to prevent sensitive training data from
being exposed during inference. Moreover, in multi-LLMs deployment scenarios, ensuring secure
inference environments through containerization and sandboxing techniques (e.g., Intel SGX [141])
is essential. These approaches isolate user inputs during inference, preventing unauthorized access
and adversarial exploitation, thereby significantly enhancing the security and trustworthiness of
LLM.

3 REQUIREMENTS ENGINEERING

From this chapter onward, we analyze the research status of each phase in the LLM development
lifecycle, identify the challenges, and propose potential future directions. For RE of LLM, the
challenges and potential future directions are shown in Figure 3.

§ 3 Requirements Engineering

§ 3.2 Challenges § 3.3 Road Ahead
Accuracy in Reasonableness in : — - I
Multi-Stakeholder Invol t
(Requirements Definition Requirements Definition ’(utti-Stakeholder Involvemen H Empirical Studies |

Fig. 3. Challenges and Road Ahead in §3 Requirements Engineering.

3.1 Research Status

To the best of our knowledge, research on RE for LLMs remains relatively limited. Due to the strong
natural language processing (NLP) capabilities of LLMs, existing studies primarily focus on leverag-
ing LLMs to support RE tasks, while comparatively fewer efforts investigate RE methodologies for
LLM development itself. This imbalance mirrors a similar trend observed in the broader Al domain.
As noted by Ahmad et al. [8], between 2011 and 2021, only approximately 43 publications explicitly
addressed RE for Al, whereas a substantially larger work explored the use of Al techniques to
enhance RE processes.

However, this imbalance does not imply that RE for LLMs is insignificant. As LLMs are increas-
ingly applied across diverse domains, they encounter distinct requirements based on the specific
demands of different scenarios. It is essential to thoroughly understand these requirements and
tailor the development of LLMs accordingly. Fischer et al. [86] fine-tuned a model based on the
requirements of investigative intelligence, yet their understanding of user requirements was mainly

, Vol. 1, No. 1, Article . Publication date: July 2025.

8 Hongzhou Rao, Yanjie Zhao, Xinyi Hou, Shenao Wang, and Haoyu Wang

derived from prior research. In contrast, Solomon et al. [323] conducted an RE study to investigate
the use of LLMs in digital inquiry processes aimed at enhancing healthcare applications. They
proposed a generalizable RE methodology for LLMs that incorporates both qualitative and quan-
titative analyses. The qualitative analysis involves studying the target population’s background,
including cultural and linguistic factors, while the quantitative analysis utilizes techniques such as
word embeddings and network analysis to construct a semantic framework for the model. Beyond
user research methods, Hassani et al. [117] addressed the requirements of a food company by
fine-tuning LLMs to enhance their ability to classify legal texts related to food safety, incorporating
both food safety system and software requirements. Additionally, Sjostrom et al. [321] proposed
meta-requirements for LLM-based knowledge retrieval tools. Although the methodologies proposed
in these studies are domain-specific and lack general applicability, they underscore the critical role
of RE in LLM development: through rigorous RE, developers can identify the specific functional-
ities and performance requirements needed, ultimately enabling the customization of powerful,
task-specific models.

In addition to the domain-specific requirements for LLMs discussed above, several general
requirements recur across diverse scenarios. These include requirements related to dataset quality,
energy efficiency, user preferences, and model interpretability. Dataset quality is a key factor
influencing the performance of LLMs [220]. Despite its importance, there remains no clear consensus
on which specific quality metrics are most relevant or how they should be applied. As a result,
researchers continue to face difficulties in consistently evaluating and comparing dataset quality
across different tasks and domains. In resource-constrained devices such as edge devices (as
discussed in §7.2), LLMs may meet requirements related to energy consumption and computational
efficiency. User preference requirements are also increasingly prominent, as policies, cultural
values, and ethical standards vary significantly across regions. These contextual factors influence
an acceptable LLM response. Finally, explainability remains a key concern. Since LLMs function
primarily as black boxes, it is often unclear how they arrive at specific outputs. This lack of
transparency raises important questions about the reliability, accuracy, and trustworthiness of their
responses [449].

3.2 Challenges

Even before the emergence of LLMs, the impressive capabilities of Al had already given rise to
misconceptions that Al could address all problems [8]. With the advent of LLMs, these expecta-
tions have grown even further, leading to an increased demand for functional requirements (FRs).
Concurrently, the inherent complexity of LLMs has given rise to a diverse array of non-functional
requirements (NFRs), such as interpretability, robustness, and efficiency. We categorize the key
challenges of RE for LLMs into two dimensions: the accuracy and the reasonableness of requirement
definitions.

Accuracy in requirements definition. Clearly defining requirements, whether FRs or NFRs,
remains a challenging task. For example, Hassani et al. [117] found it difficult to determine which
food safety regulations applied to software requirements, as these laws were not formulated initially
with digital systems or Al integration in mind. Similarly, when defining NFRs such as creativity,
conceptual ambiguity becomes a significant obstacle. Questions such as “What constitutes creativity
in the context of LLMs?”, “Which domains should it be evaluated in?” and “How can it be measured
objectively?” are still far from being resolved [87].

Reasonableness in requirements definition. Beyond accuracy, it is equally essential to
ensure that requirements are reasonable and achievable. Conflicting requirements or unrealistic
expectations often necessitate trade-offs to formulate practical and balanced specifications. For
instance, in edge deployment scenarios involving resource-constrained devices, a certain degree of

, Vol. 1, No. 1, Article . Publication date: July 2025.

Software Engineering for Large Language Models: Research Status, Challenges and the Road Ahead 9

performance degradation is inevitable. So defining acceptable trade-offs, such as how much accuracy
can be sacrificed while maintaining robustness, or how much memory and computing resources
the model is allowed to use, presents a complex challenge. Output consistency is another challenge.
Due to the inherently probabilistic behavior of LLMs, it is often unrealistic to expect identical
outputs for the same input, which calls for more flexible and context-aware approaches to defining
such requirements. Together, these challenges highlight the need for refined RE methodologies
tailored to LLMs—methods that can more accurately and practically define both FRs and NFRs.

3.3 Road Ahead

To address the challenges outlined above, we propose two feasible research directions. First, to
improve the accuracy of requirements definition, we recommend adopting a multi-stakeholder
involvement strategy, which engages users, developers, and domain experts in a collaborative
process to reach consensus on requirements. This approach has been successfully applied in several
specific scenarios. For instance, Solomon et al. [323] collaborated with medical professionals to
validate the accuracy of their analytical framework and established general principles for require-
ment definition in digital healthcare contexts. Similarly, Chakrabarty et al. [24] recruited writers,
volunteers, and domain experts to define LLM creativity, incorporating expert insights along-
side standardized creativity assessment methods such as the Torrance Tests of Creative Thinking
(TTCT) [344]. However, these examples mainly focus on specific, well-defined user groups. In
scenarios involving international or cross-domain user bases, the effectiveness and scalability of
such multi-stakeholder approaches become limited. Therefore, a promising future direction is to in-
vestigate how to more systematically and scientifically incorporate diverse stakeholder perspectives
when defining requirements across broader, more heterogeneous application environments.

Second, to address the challenge of defining reasonable requirements, we advocate for increased
emphasis on empirical studies. Such studies enable a systematic understanding of the trade-offs
involved in LLM deployment by evaluating model performance across diverse scenarios, which
facilitates the establishment of practical, evidence-based requirement boundaries. For example,
Huang et al. [136] conducted an extensive evaluation of LLaMA3 quantization across 1-8 bits
settings, yielding empirical insights into the trade-offs between model performance and memory
efficiency. Nevertheless, such empirical efforts are still relatively limited, highlighting the need for
further research in this direction.

4 DATASET CONSTRUCTION

In the development of LLMs, training datasets, encompassing both pre-training and fine-tuning
corpora, play a crucial role. In this section, we analyze datasets primarily from two critical dimen-
sions: data quality and data security. These aspects not only influence model performance and
generalization but also raise technical and ethical challenges. As shown in Figure 4, by focusing on
our discussion around these two dimensions, we aim to provide a comprehensive perspective on
the construction and utilization of datasets in LLM development.

4.1 Data Quality

4.1.1 Research Status. Data quality directly influences the diversity, relevance, and accuracy of
datasets, which are critical factors in improving LLM performance for specific tasks [220]. Feng
et al. [85] demonstrated a positive correlation between the frequency of causal relationships in
pretraining corpora and LLM performance in causal discovery tasks. Similarly, Rao et al. [293]
proposed a pre-training approach that leverages the mapping between code and test files to enhance
the relevance of training data, thereby improving LLM-generated test cases. As a result, obtaining
high-quality datasets has become a key focus of research.

, Vol. 1, No. 1, Article . Publication date: July 2025.

10 Hongzhou Rao, Yanjie Zhao, Xinyi Hou, Shenao Wang, and Haoyu Wang

s N

§ 4.1 Data Quality § 4.2 Data Security

§ 4.1.2 Challeng § 4.2.2 Challenges §4.2.3 Road Ahead
§4.1.3 Road Ahead

| Data Source Filtering ‘

‘ Limitations of Manual Dataset ‘
Construction |Data Pipeline Optimization| l Training Data Poisoning ‘

[Imbalanced Data Distribution | | Data Detection Techniques |
| Adaptive Data Evaluation | |Training Data Authorizatiun|

| Limitations of LLMs in Data Synthesis| |Effective Membership Inference‘

J

Fig. 4. Challenges and Road Ahead in §4 Dataset Construction.

According to the construction method, we broadly categorize current approaches to improving
data quality into two main strategies: (@) manual data labeling and rule-based selection, and (b) LLM-
assisted data construction. Manual methods typically yield high-quality datasets [45, 189,319, 402]
but are labor-intensive and often result in relatively small datasets. While LLM-assisted methods
involve using LLMs to label, synthesize, or filter high-quality data automatically. Due to their strong
performance, LLMs have been extensively employed for data construction [42, 214, 257, 366] to
facilitate large-scale dataset generation through dedicated pipelines or agents. Correspondingly,
there are two primary LLM-based data generation methods: reference-based methods and
collaborative LLM methods. Reference-based methods typically leverage high-quality seed
datasets, strong baseline models, or external knowledge sources as references to guide the generation
of higher-quality datasets. For instance, Gao et al. [94] introduced a teacher-student framework
where an LLM extracts high-quality samples from unlabeled data by comparing them against a
reference dataset. Collaborative LLM methods involve multiple LLMs working together to identify
high-quality datasets. For example, Liu et al. [223] fine-tuned datasets using human expert-created
instructions to produce richer and more precise instruction datasets. Similarly, Huang et al. [132]
employed LLMs to optimize fine-tuning datasets for improved code generation efficiency. Despite
their advantages, these methods share a common limitation: their effectiveness is inherently
constrained by the performance of the LLM itself. If the LLM’s capability is suboptimal, the quality
of the generated datasets is affected [431].

As an essential component of data quality, data diversity has a significant impact on model
generalization and robustness. Thus, it has gained people’s attention. Zhou et al. [464] demonstrated
the presence of long-tail effects in datasets, where LLMs exhibit lower performance on rare data
categories. Traditional approaches, such as Focal Loss [300] and Learning-to-Rank (LTR) [11], have
been proven ineffective in mitigating these issues for LLMs.

Therefore, approaches for enhancing data diversity have been widely studied in recent years,
which can be broadly classified into two categories: (a) preserving diverse samples during data
selection and (b) employing data synthesis techniques. Although real-world data is inherently
diverse [282], its imbalanced distribution poses significant challenges [227], such as minor lan-
guages remaining persistently underrepresented, which causes the related corpus to be significantly
rare [159, 241]. Due to the high cost of manual efforts, researchers often rely on LLMs to select di-
verse data samples automatically. However, their capability to directly assess data diversity remains
limited [273]. Consequently, researchers have turned to data synthesis techniques to enrich under-
represented categories [226]. Also, due to the high costs associated with manual data synthesis [220],
recent efforts have focused on leveraging LLMs for automated data generation [42, 374, 393]. Yuan
et al. [433] applied this method to synthesize biographical texts, reducing biases associated with
occupation and improving dataset balance. Additionally, LLMs can serve as translators, converting

, Vol. 1, No. 1, Article . Publication date: July 2025.

Software Engineering for Large Language Models: Research Status, Challenges and the Road Ahead 11

widely available data from natural languages [466], programming languages [22, 211], or multime-
dia formats [232] into less common languages, programming paradigms, or textual information.
This approach generates rare data types at scale while minimizing human effort. However, due to
inherent biases in LLMs, it may inadvertently introduce biases or errors [68, 397].

4.1.2 Challenges. The findings discussed above highlight several challenges in improving data
quality, which can be categorized into three key aspects:

Limitations of manual dataset construction. Manual data creation is labor-intensive and
inherently constrained in scale. A significant drawback is its time-consuming nature, as tasks such
as dataset cleaning, labeling, and ensuring balanced data distribution require extensive human
effort. Although pipelines and custom rules can assist in data collection and filtering, we still can
not achieve full automation to process data. Furthermore, it is impossible to mitigate biases and
achieve a well-balanced dataset distribution only through rule-based automation. As a result, the
dependence on manual processes limits the speed and scalability of dataset development.

Imbalanced data distribution. Data imbalance is common in both real-world distributions and
training dataset distributions. Different languages [159, 227], geographic regions, time periods [241],
and data sources contribute to this imbalance, which complicates data acquisition and processing.
As a result, imbalanced datasets introduce challenges: (a) The long-tail effect [464], where LLMs
perform poorly on underrepresented data categories. (b) Inherent biases. When sources like social
media dominate datasets, they often carry inherent biases [198]. These biases can harm model
generalization [185] and raise ethical issues [150].

Limitations of LLMs in data synthesis. Despite their advancements, LLMs exhibit inherent
limitations in improving data quality and generating synthetic data [431]. Since many of their
abilities are still not comparable to human experts, fully relying on automation for data filtering,
labeling, and evaluation is often ineffective. For instance, Pang et al. [273] found that LLMs struggle
with accurately assessing data diversity. While LLMs have shown promise in data synthesis, their
inherent biases can result in imbalanced synthetic data distributions [68, 397], further complicating
the challenge of dataset construction.

4.1.3 Road Ahead. To enhance data quality, we propose two potential research directions. Data
pipeline optimization is a promising direction. Specialized data pipelines or agents for collecting
and processing LLM training data have been explored by Ostendorff et al. [269]. Furthermore,
such architectures should incorporate automated tools to efficiently filter or generate target data
based on user configurations. In addition to essential automation tools, LLMs can assist in this
process. However, given the limitations of a single model, leveraging multi-model collaboration and
multimodal data transformation can help overcome these constraints. Furthermore, incorporating
human expert feedback can enhance data quality while mitigating the high costs associated with
manual dataset construction.

At the same time, adaptive data evaluation can further improve data diversity by establishing
robust evaluation mechanisms. Potential approaches include: (a) Dynamic long-tail adaptation,
which adjusts data generation in real time based on distribution patterns to prevent imbalances.
We can incorporate models such as support vector machines (SVMs) or clustering algorithms to
automatically classify data and infer its distribution. However, data distribution detection faces
two main challenges: how to define suitable classification criteria and how to determine the
categories to be used. (b) Multimodal contextual assessment, which utilizes advanced multimodal
translation techniques to generate data across different modalities based on evaluation results. This
method facilitates cross-modal data transformation to enhance data diversity and improve overall
data quality. (c) Bias-aware diversity scoring frameworks. Although LLM-as-a-judger has become
increasingly popular, it remains unsuitable for reliably identifying bias. In the future, we could

, Vol. 1, No. 1, Article . Publication date: July 2025.

12 Hongzhou Rao, Yanjie Zhao, Xinyi Hou, Shenao Wang, and Haoyu Wang

build a clear and practical framework for evaluating bias, including clear categories of bias and
corresponding assessment metrics. Within this framework, LLMs could serve as auxiliary tools
to match outputs with relevant bias categories or similar cases. By analyzing the distribution of
outputs within the same category, it would then be possible to determine whether a particular LLM
response exhibits bias more accurately.

4.2 Data Security

4.2.1 Research Status. As discussed in §4.1, datasets may contain biased or harmful content, making
LLMs susceptible to generating incorrect or unsafe outputs [280]. This issue poses significant risks
in critical domains such as healthcare [10]. One major cause of this problem is data poisoning [144,
148, 398], where adversarially manipulated data is put into training datasets, leading to unintended
behaviors in LLMs. While existing studies [270, 352] have explored methods to mitigate dataset
bias, more advanced techniques are still needed to identify increasingly complex bias patterns.

Beyond biased data, the widespread adoption of LLMs for code generation has raised concerns
regarding malicious code embedded in training datasets, which can lead LLMs to produce security
vulnerabilities [46, 250]. Yan et al. [405] and Liu et al. [216] demonstrated that LLMs can synthesize
vulnerable code capable of evading traditional static analysis tools as well as LLM-based vulnera-
bility detection mechanisms. Although researchers have proposed countermeasures at different
stages, including during code generation [178, 258] and post-generation analysis [401], the issue of
preventing malicious code at the dataset level has received limited attention from researchers.

Additionally, since many LLM training datasets are not publicly disclosed, concerns have
emerged regarding the use of unauthorized data, raising complex intellectual property and le-
gal issues [391, 463]. To address the issue of training data authorization, researchers have explored
membership inference techniques [38, 54, 238, 312] to determine whether a specific dataset was
used in model training. For instance, Shi et al. [312] proposed a method to detect whether a dataset
was incorporated into an LLM’s training data by analyzing whether it was publicly released after the
model’s training period. However, this approach does not infer internal relationships within datasets.
To overcome this limitation, Maini et al. [238] trained a linear model and used information scores to
determine if a dataset was part of the model’s training set. However, this method is still not precise
enough. Another technique to address data authorization is digital watermarking [47, 108, 272, 371],
which embeds markers to trace unauthorized usage and ensure data provenance. However, due to
the current limitations of watermarking technology, such as requiring black box access rights [370]
or being vulnerable to attacks [274], it still needs to be further improved.

4.2.2 Challenges. The aforementioned research findings highlight two key challenges in ensuring
the security of training data: training data poisoning and training data authorization. Each
aspect presents unique risks and requires targeted mitigation strategies to address them.

Training data poisoning. LLM training relies on large-scale datasets, making it highly suscepti-
ble to data poisoning attacks. Adversaries can deliberately inject malicious information, misleading
content, or backdoor data into training sets to manipulate model behavior or even exert control
over its generated outputs. These attacks include backdoor attacks, knowledge contamination,
ethical and security pollution, and steganographic attacks. Even if a training dataset contains
only a small fraction of malicious code, the trained LLM may still generate vulnerable code with
high probability [280]. However, defending against data poisoning remains highly challenging
due to LLMs’ reliance on extensive, unverifiable datasets. While techniques such as poisoned data
detection [17] and secure prompt engineering [413, 441, 459] have been developed to mitigate the
impact of data poisoning, limited research has focused on systematically detecting and filtering
malicious data within training datasets [51].

, Vol. 1, No. 1, Article . Publication date: July 2025.

Software Engineering for Large Language Models: Research Status, Challenges and the Road Ahead 13

Training data authorization. Training data is often sourced from open datasets, web-scraped
content, and user-provided data. However, not all data is explicitly authorized for commercial use
or model training, posing legal risks related to copyright infringement, privacy compliance, and
platform policies. Currently, membership inference and digital watermarking techniques are the
primary methods used to address data authorization concerns. However, these techniques have their
limitations. For example, some methods rely on disclosure time information or require black-box
access to the model, which makes data verification less accurate and limits their applicability.

4.2.3 Road Ahead. Currently, no fully effective solution exists for mitigating training data poison-
ing [51], but several promising directions are worth further exploration. One potential approach is
data source filtering, which involves establishing trusted data sources and exclusively collecting
data from these sources. When combined with data provenance techniques to track the origin and
modification history of data, this method enhances the traceability of datasets. However, it faces
notable challenges, including ensuring the reliability of trusted sources and the limited availability
of high-quality training data. Another promising direction is the advancement of data detection
techniques. While some studies [46, 88, 148] have been conducted, more precise detection methods
are required to identify malicious data, biased content, and trigger patterns. To address this, a
data auditing and risk assessment platform could be developed, integrating automated tools for
real-time or periodic security audits to identify data quality and security issues. Given LLMs’ strong
analytical capabilities and their successful applications across various domains [154], it is viable
to leverage them for finer-grained detection. Specifically, a real-time anomaly detection system
powered by LLM-assisted analysis could be designed to automatically identify and block anomalous
data before it enters the training pipeline, thereby minimizing its potential negative impact.

To address data authorization concerns, integrating data provenance with blockchain technology
represents a potential solution. However, storing large-scale datasets on-chain remains a significant
challenge. Even if only dataset hashes are recorded on-chain, this approach becomes significantly
less effective when there is little to no information available about the datasets used to train the
LLMs. Thus, effective membership inference is essential. Although recent studies [239, 244]
have made notable progress, they fall short of addressing deeper, structural challenges that remain
at the core of the problem. The method proposed by Maini et al. [239] requires independently
and identically distributed (IID) datasets, while the approach in Meeus et al. [244] struggles with
small-scale inference and its accuracy remains limited. Future research should focus on enhancing
membership inference methods to achieve higher accuracy and finer granularity.

5 DEVELOPMENT AND ENHANCEMENT

The development of LLMs has revolutionized the field of AL. However, it also introduces unique
challenges from an SE perspective. Model enhancement aims to improve a model’s capabilities,
performance, and reliability. Notably, since models can be enhanced during development through
fine-tuning or continual training, a strong coupling exists between the development and enhance-
ment phases. Due to this interdependence, we explore the critical challenges associated with both
LLM development and enhancement, focusing on three primary phases of model development:
pre-training, fine-tuning, and model integration, as shown in Figure 5. We first analyze existing
limitations and emerging solutions, followed by a discussion of key techniques: model compression
and PEFT.

5.1 Pre-Training

5.1.1 Research Status. Pre-training is the foundation of LLM development, yet it faces challenges
in terms of scale, resource demands, and engineering complexity. Ensuring and enhancing the

, Vol. 1, No. 1, Article . Publication date: July 2025.

14 Hongzhou Rao, Yanjie Zhao, Xinyi Hou, Shenao Wang, and Haoyu Wang

§ 5.1 Pre-Training § 5.3 Model Intearation § 5.5 PEFT
§ 5.1.2 Challenges § 5.1.3 Road Ahead § 5.3.2 Challk § 5.5.2 Challenges

Prompt Transformation o
| Training stability ‘ [Stable Training ‘ Vol Al | Additive PEFT Challenges
‘Compulational Resource Management‘ ‘ Efficient Training ‘ Multi-Model Collaboration

Multi-Agent System Scaling

§ 5.3.3 Road Ahead
Intelligent Prompt and
Secure Frameworks

§ 5.4 Model Compression ‘ Adaptive Adapter Architectures |

| Selective PEFT Challenges

\
|
|

| LoRA Challenges

§ 5.2 Fine-Tuning Model Integration Security

§ 5.2.3 Road Ahead § 5.5.3 Road Ahead

§ 5.2.2 Chall

l Hybrid Fine-Tuning Architectures ‘

Parameter Testing and

Multi-Task and Cross §54.2¢
. " " 5.4.3 Road Ahead i
Domain Adaptation l Modular Fine-Tuning Architectures ‘ ’—‘Quantization Challenges 8 —‘ Recommendation Tools

Catastronhic Forgatt ‘ Memory-Augmented Models ‘ KD Challenges Compact and Efficient Soft Prompt Filtering Techniques
atastrophic Forgetting ‘ Diagnostic and Visualization Tools ‘ Model Compression
Pruning Challenges

Data Filtering and Detection

Fig. 5. Challenges and Road Ahead in §5 Development and Enhancement.

effectiveness of pre-training has been a long-standing research focus, with efforts directed towards
optimizing training datasets, refining training methodologies, and improving computational effi-
ciency [197, 342]. SE plays a critical role in advancing LLM pre-training, contributing to areas such
as automating training pipelines [119, 229], optimizing training architectures [255], enhancing
stability and security [34, 248, 368, 387], and reducing energy consumption [15].

As models continue to grow in size and complexity, maintaining training stability has become
an increasingly critical challenge [337], particularly in ensuring smooth convergence. Existing
research primarily focuses on mitigating gradient explosion [368] and gradient vanishing [248],
as well as optimizing learning rates [34, 387], all of which aim to regulate parameter distributions
and transformations during training to enhance stability. For instance, Chung et al. [43] controlled
output layer embedding variance to prevent gradient explosion, while Agarwal et al. [3] and Woo
et al. [377] improved stability by selectively discarding specific backpropagation steps. Nishida
et al. [261] attributed loss spikes and convergence failures to uneven parameter distributions
and introduced weight scaling as reparameterization (WeSaR) to normalize parameter norms for
stable training. Similarly, Wortsman et al. [378] proposed a hybrid AdamW-Adafactor optimizer
to mitigate loss spikes. Moreover, parameter precision also impacts training stability. DeepSeek-
V3 [203] preserved the original precision of specific model components to ensure stable training.

The exponential growth in model sizes has further intensified computational resource con-
straints [16, 303, 310, 382, 394]. Training SOTA LLMs requires extensive computational infrastruc-
ture, which costs potentially reaching millions of dollars per training run. One commonly adopted
approach to alleviate this challenge is model compression [470], which reduces model size to lower
resource demands. However, these methods often result in some degree of performance degradation.
We will discuss model compression techniques in detail in §5.4.

5.1.2 Challenges. The research mentioned above highlights two key challenges in pre-training:
Training stability. Although various techniques have been proposed to improve training
stability, most approaches rely on heuristics rather than systematic frameworks. For instance,
learning rate (LR) warm-up is commonly employed to mitigate gradient explosion and enhance
stability. However, there is currently no general model for evaluating its effectiveness across
different LLM architectures and training setups [390]. In practice, parameter settings are often
chosen through trial and error, based on the needs of individual cases [109, 140]. Moreover, as
model sizes continue to increase, the training process becomes increasingly complex and difficult
to regulate; therefore, it is necessary to conduct systematic research into training stability.
Computational resource management. As LLMs continue to scale, managing computational
resources has become a major challenge—training a single large model can cost millions of dollars

, Vol. 1, No. 1, Article . Publication date: July 2025.

Software Engineering for Large Language Models: Research Status, Challenges and the Road Ahead 15

in hardware, energy, and time [67, 395]. This economic burden limits the capability of smaller
research teams and companies with constrained resources to develop proprietary LLMs, limiting
opportunities for smaller research teams to innovate and allowing a few major proprietary models
to maintain their leading positions in the field. Lowering training costs would make it easier for
smaller labs and open-source communities to build and improve their models, helping to reduce the
dominance of a few major players. In the industry, the cost-efficient training approach adopted in
DeepSeek-V3 [203] has already garnered significant attention, further facilitating the development
of more accessible and cost-effective models.

5.1.3 Road Ahead. To address these challenges, potential solutions can be explored from two key
directions: stable training and efficient training.

Stable training. One of the primary causes of training failures in LLMs lies in internal parameter
updates. As discussed in §5.1.1, most existing approaches rely on heuristic adjustments rather than
rigorous theoretical foundations. Zucchet et al. [476] explored optimization challenges in RNNs and
identified fundamental causes of gradient explosion. Similarly, achieving a deeper theoretical
understanding of training dynamics in LLMs is essential for identifying key instability factors,
such as the underlying triggers of loss spikes. Beyond theoretical advancements, the development
of real-time monitoring and analysis tools for LLM training could enable the detection and
prediction of anomalous behaviors by tracking stability-related metrics. Additionally, it is important
to design user-friendly visualization tools and interactive interfaces that help researchers interpret
model behavior and monitor the training process more effectively.

Efficient training. Due to the high computational costs associated with pre-training, improving
LLM efficiency is a crucial research direction. GPUs used for model training are extremely costly,
which makes it essential to have tools that can monitor usage in real time and adjust workloads
to avoid waste. These tools should minimize GPU usage without increasing training time
or compromising model performance, thereby significantly reducing overall computational
costs. Additionally, model growth techniques from ML in which smaller models are leveraged to
accelerate the training of larger ones hold promise for improving efficiency. While this approach
has not yet been widely adopted in LLM pre-training, Du et al. [65] conducted an empirical study
providing insights into its potential application. Therefore, it is considered valuable to explore
the application of model growth techniques in LLM development in the future.

5.2 Fine-Tuning

5.2.1 Research Status. Fine-tuning enables pre-trained LLMs to adapt to specific tasks while bal-
ancing adaptation, knowledge retention, computational efficiency, and deployment constraints.
However, it presents several challenges, including PEFT (will be discussed in detail in §5.5), cata-
strophic forgetting prevention, and cross-domain generalization.

Fine-tuning has been widely employed to enhance model performance across diverse tasks [285,
306]. While fine-tuned models often exhibit significant improvements in individual tasks, effectively
fine-tuning LLMs for multi-task scenarios remains a major challenge [204]. Existing approaches
frequently struggle with task interference, optimal resource allocation across different objectives,
and maintaining consistent performance across diverse domains [194, 341, 385, 388]. To address
these challenges, researchers have explored techniques such as LoRA [6, 231] and MoE [163, 414,
469], further enhanced by optimization techniques [174, 355] and resource allocation strategies [215,
264]. However, one major challenge is improving task-specific performance while still preserving
the model’s general ability to work across different domains.

Additionally, fine-tuning introduces the risk of catastrophic forgetting, wherein models lose
previously acquired knowledge during adaptation. Recent studies suggest that what appears to

, Vol. 1, No. 1, Article . Publication date: July 2025.

16 Hongzhou Rao, Yanjie Zhao, Xinyi Hou, Shenao Wang, and Haoyu Wang

be forgetting may be caused by the model becoming less aligned with the task, rather than truly
losing the knowledge it learned [456]. However, the underlying causes are still unclear [179]. This
problem becomes even more noticeable when the model needs to be updated regularly [111] or
adapted to new domains [205], as it often struggles to retain its original capabilities while learning
new ones.

LoRA has demonstrated potential in mitigating catastrophic forgetting and has achieved notable
success [64, 259, 297]. However, recent studies indicate that LoRA still struggles with certain lim-
itations, such as instruction-following constraints [146] and scaling challenges [155]. Continual
learning approaches have been proposed to enable iterative knowledge acquisition while preventing
forgetting [80, 325]. Nevertheless, research has shown that continual learning can lead to signifi-
cant performance degradation after repeated training cycles [134, 176, 190]. Furthermore, these
approaches are not universally applicable across different modalities in multimodal LLMs [437],
underscoring the need for modality-specific fine-tuning solutions.

5.2.2 Challenges. Beyond PEFT, which will be discussed in §5.5, we identify two key challenges in
fine-tuning.

Multi-task and cross-domain adaptation. Fine-tuning LLMs for multiple tasks or domains
simultaneously presents several challenges [204], including task interference, optimal resource allo-
cation, and maintaining consistent performance across diverse domains. While existing approaches
such as LoRA and MoE have demonstrated effectiveness in mitigating these issues, there are still
further improvements needed in areas such as training efficiency [364], model generalization [194],
and system overhead during task switching [385].

Catastrophic forgetting. The underlying mechanisms behind catastrophic forgetting in LLMs
remain largely unexplored, and no highly effective solutions have been developed to address this
issue comprehensively. Although existing techniques, such as LoRA and continual learning, can
help mitigate forgetting, they often come at the expense of performance degradation or the loss
of other learned knowledge. Furthermore, these approaches are ineffective in multimodal models,
which highlights the importance of developing fine-tuning methods tailored to each modality.

5.2.3 Road Ahead. The challenges of catastrophic forgetting and multi-task, multi-domain adapta-
tion underscore the lack of universality in current fine-tuning methods, which have yet to achieve
the goal of adapting to diverse tasks [285]. Future fine-tuning approaches should aim to enable
both effective multi-task adaptation and mitigate catastrophic forgetting.

For multi-task and multi-domain adaptation, a promising direction is to integrate various
fine-tuning techniques, such as LoRA, with MoE, quantization, and resource optimization strategies,
forming a hybrid fine-tuning architecture. Specifically, designing an architecture capable of
real-time monitoring of task interference could enable the rapid detection of adverse transfer
effects, allowing for automated adjustments in task allocation and fine-tuning strategies. For
instance, dynamically allocating additional resources to tasks with higher interference could
mitigate performance degradation. This approach has the potential to minimize or eliminate
task interference while preserving model generalization and maintaining inference efficiency. In
addition to combining different fine-tuning methods, a modular fine-tuning architecture could
be designed to make it easier for LLMser to switch between, plug in, or combine modules tailored
to specific tasks or domains. Such an approach would reduce the coupling between fine-tuning
techniques, thereby lowering maintenance costs and improving adaptability. Notably, this idea
aligns with the design principles of industrial MoE and LoRA modules, which primarily focus
on enhancing LLM performance. Recent studies on MoE and LoRA [156, 183, 403] have begun
exploring intelligent scheduling mechanisms to support multi-task adaptation further.

, Vol. 1, No. 1, Article . Publication date: July 2025.

Software Engineering for Large Language Models: Research Status, Challenges and the Road Ahead 17

For catastrophic forgetting mitigation, an essential research direction is the development of
comprehensive methods to assess the extent and content of knowledge forgotten by LLMs. Such
evaluations are crucial for facilitating targeted recovery of forgotten information and improving
model retention strategies. Additionally, knowledge retention techniques tailored for multimodal
models are urgently needed, as traditional PEFT and continual learning methods have demonstrated
limited effectiveness in this context. Future research could explore memory-augmented models
that leverage external memory mechanisms, such as knowledge graphs and vector databases, to
reduce reliance on parameter-based memory. Furthermore, inspired by LR warm-up strategies,
progressive adaptation [124] could be investigated as a gradual fine-tuning approach to prevent
large learning rates from causing gradient explosion or vanishing, thereby mitigating the effects of
forgetting. Another significant challenge is that catastrophic forgetting often remains undetected
until post-fine-tuning evaluation, making real-time performance assessment difficult. This lack
of visibility underscores the need for diagnostic and visualization tools specifically designed
to monitor catastrophic forgetting. Future research could focus on building a diagnostic and
visualization platform that helps developers track and understand how well knowledge is retained
during the fine-tuning process. As Zheng et al. [456] point out, catastrophic forgetting does not
mean that the model has truly lost the knowledge. With such a platform, developers can detect signs
of forgetting on time, roll back to a previous version of the model, and adjust the training strategy
for retraining. In addition, automated rehearsal mechanisms or adaptive prompting strategies [134]
could also be integrated to proactively reduce the risk of forgetting.

5.3 Model Integration

5.3.1 Research Status. Unlike model development and enhancement through pre-training and
fine-tuning, alternative approaches such as expanding a model’s knowledge base via Retrieval-
Augmented Generation (RAG) or knowledge graph techniques, developing multimodal models, and
enabling multi-model collaboration focus on integrating external models or tools with base models,
known as LLM-based agents, to accomplish more complex tasks. Collectively, we refer to these
approaches as model integration, wherein SE plays a crucial role in multiple aspects, including
transforming information into prompts, coordinating interactions between models or with external
tools, and optimizing routing decisions.

In LLM integration, the inclusion of RAG, knowledge graphs, additional sensors, and multimodal
base models introduces a diverse and extensive range of information sources [113]. Consequently,
effectively transforming this information into prompts suitable for LLM task execution is impor-
tant. Current research primarily focuses on preprocessing external information before generating
prompts. For instance, Li et al. [192] proposed a method for summarizing contextual information be-
fore submitting it to the LLM. Similarly, in RAG, prompts are generated by combining retrieval-based
methods with knowledge graphs to provide more task-relevant contextual knowledge [209, 242, 399].
Moreover, tools such as EasyTool [434] consolidate diverse tool-related information into unified
interfaces for LLMs to process. However, these methods remain constrained by the limitations of
the context window and the inherent capabilities of LLMs, preventing fundamental optimization.
To address this issue, Koh et al. [164] proposed a more foundational approach, mapping textual
information into the embedding space of vision models to enhance image representation. Never-
theless, this approach is still limited by the constraints of the model’s embedding space. Therefore,
to make real progress, new strategies are needed that go beyond the current methods.

Given the emergence of recent protocols such as A2A, MCP, the Agent Communication Pro-
tocol (ACP)[4], and the Agent Network Protocol (ANP)[5], which all emphasize communication
and collaboration among models and tools, it is evident that the future focus of model integration

, Vol. 1, No. 1, Article . Publication date: July 2025.

18 Hongzhou Rao, Yanjie Zhao, Xinyi Hou, Shenao Wang, and Haoyu Wang

lies in multi-model, multimodal processing and interactive cooperation with external tools. Ac-
cordingly, we highlight three representative forms of model integration: multimodal models,
multi-model collaboration, and LLM-based agents. Multimodal models are capable of receiving
inputs from various modalities and producing outputs across multiple modalities. Multi-model
collaboration refers to leveraging cooperation, competition, or cascading among different models
to accomplish complex reasoning tasks. LLM-based agents, in contrast, are built upon LLMs as
the central reasoning component, and are capable of planning, decision-making, and executing
tasks by interacting with external tools and knowledge sources. As illustrated in Figure 6, although
these three paradigms differ in focus, there is overlap among them. For instance, in multi-model
collaboration, complex tasks can be decomposed and distributed across models via multi-agent
systems [82]. LLM-based agents can integrate multimodal models to mitigate hallucinations and
enhance reasoning capabilities [145], or dynamically select from a pool of multimodal models of
varying types and sizes to suit different task requirements [440]. For clarity, we analyze these three
integration paradigms separately, focusing on their unique characteristics and technical challenges,
while leaving their areas of overlap outside the scope of this discussion.

LLM-based agents with
multimodal agents

HE S HEEE Rl g Multimodal Models

Multi-model collaboration
with multimodal models

Multi-model collaboration
through multi-agent systems

Multi-model Collaboration

Fig. 6. Overlap between LLM-based agents, multimodal models, and multi-model collaboration.

For multimodal models, a fundamental challenge lies in achieving effective alignment across
different modalities (e.g., text, vision, and audio) [35]. This challenge involves several key aspects.
First, semantic consistency ensures that meaning is preserved across modalities [187, 367]. Second,
representation alignment focuses on aligning embeddings and features from different modalities to
support better understanding and knowledge sharing [173, 305]. Third, cross-modal understanding
aims to bridge the gaps between modalities, enabling smoother knowledge transfer and more
effective interaction [139]. Liu et al. [207] highlight that failure to address these issues can result
in severe performance degradation or hallucination effects. Furthermore, these challenges extend
across various stages of multimodal model development, including data processing [196, 460] and

, Vol. 1, No. 1, Article . Publication date: July 2025.

Software Engineering for Large Language Models: Research Status, Challenges and the Road Ahead 19

pre-training strategies [195], both of which face significant hurdles. Closing these gaps is crucial
for developing multimodal models that can perform effectively across a broad range of real-world
tasks.

In contrast, multi-model collaboration has been explored as a means of enhancing reasoning
capabilities [213, 278, 309]. However, differences in what models can do, how they respond, and
the values they reflect make it necessary to align them carefully to ensure they can work well
together. Without such alignment, issues such as hallucinations may mislead reasoning processes,
potentially resulting in incorrect or failed outcomes [83, 84]. Although several approaches have
been proposed to mitigate these challenges, such as fine-tuning [396], uncertainty estimation [428],
and probing other LLMs to address knowledge gaps [83], there still lacks enough research in
this area. Another significant challenge lies in the coordination of multi-model systems, which
includes managing workflows, optimizing inter-model communication, and efficiently allocating
computational resources. While novel routing strategies have been introduced, such as MARS [129],
TO-Router [330], Eagle [455], and C2ZMAB-V [49], these approaches often fail to consider critical
real-world constraints, such as computational resources and network bandwidth. In practice, these
resource limitations introduce additional complexities [279], which will be further discussed in §7.

Another common integration form is the LLM-based agent. Leveraging the powerful reasoning
and decision-making capabilities of LLMs, LLM-based agents can autonomously perceive their
environment, adapt to changes, and take actions when interacting with external systems, such
as web services, databases, or local files. As a result, they have been widely applied in different
areas [33, 133, 165, 237, 356]. Currently, LLM-based agent frameworks typically consist of four core
modules: plan, perception, memory, and action [39, 210, 230, 383]. Specifically, the plan module
is responsible for strategy formulation and execution planning, the perception module handles
environmental input sensing and its transformation into representations that LLMs can understand,
the memory module stores historical information to support context retrieval and ensure coherent
decision-making, and the action module executes specific operations and tool invocations.

Although single-agent systems have shown impressive capabilities, they often struggle to handle
complex tasks that require diverse skills, parallel processing, or coordinated decision-making [210].
To address these challenges and scale to more sophisticated problems, multi-agent systems (MAS)
are explored, enabling division of labor and collaborative problem-solving by coordinating the
efforts of multiple autonomous agents [39, 230], which requires robust agent-to-agent commu-
nication and collaboration mechanisms between the agents themselves. Protocols designed for
agent-to-agent communication facilitate such inter-agent collaboration, enabling agents to discover
each other’s capabilities, delegate tasks, and exchange information. For instance, the A2A [335]
specifically supports peer-like task outsourcing and dynamic interaction between autonomous
agents, often within enterprise-scale workflows [71]. Beyond inter-agent communication, a funda-
mental requirement for both single and multi-agent systems is effective interaction with diverse
external tools and resources for task execution and data retrieval. However, it is a significant
challenge to standardize this agent-to-external system interaction. Additionally, existing tool inte-
gration methods are often fragmented, relying on complex manual wiring and platform-specific
approaches that limit scalability and interoperability [39, 127, 230]. To address this fragmentation
and standardize Al model-to-external system interaction, the MCP [14] introduces a unified com-
munication framework for LLMs to interact with external tools and resources, which simplifies
tool invocation and enhances interoperability across diverse systems. Although introduced only
recently, MCP has gained significant attention [127, 317]. It enables LLM-based agents to interact
with external tools and systems more easily through a unified interface, facilitating the completion
of complex tasks more efficiently.

, Vol. 1, No. 1, Article . Publication date: July 2025.

20 Hongzhou Rao, Yanjie Zhao, Xinyi Hou, Shenao Wang, and Haoyu Wang

Another critical issue in model integration that has garnered significant attention is security. Due
to the diverse and complex nature of real-world scenarios, even LLMs that have undergone safety
alignment remain vulnerable to prompt injection attacks [102, 221]. Suo et al. [334] proposed Signed-
Prompt as a defense against sensitive prompt injection attacks. However, Liu et al. [217] identified
an attack technique that exploits prompts to achieve remote code execution (RCE). Similarly, Evertz
et al. [73] outlined two methods for extracting confidential information through malicious prompts:
(a) inducing the model to leak data by disguising malicious input as legitimate user queries and (b)
injecting malicious data into external tools to hijack the model’s behavior, leading it to execute
unsafe operations. These examples demonstrate the vulnerability of prompt environments in model
integration settings, as observed by Zhan et al. [438]. Although various studies have proposed
effective defense mechanisms, including benchmarks [222, 286, 438], fine-tuning [286], prompt
filtering [281], and LLM-based defenses [286, 458], recent studies [55, 138, 172, 214, 276] highlight
their limitations, which underscores the need for further investigation into emerging attack vectors
and the development of more robust security strategies to safeguard LLMs in the real world.

In addition to direct attacks targeting the models themselves, the communication protocols
facilitating model integration and agent interaction can also become potential entry points for
security threats. Protocols such as the MCP (for agent-tool interaction), ACP, A2A, and ANP (for
inter-agent communication in various contexts) each introduce specific security risks throughout
their lifecycle. For instance, MCP servers, which mediate agent access to external tools, face
risks including code injection, backdoor implantation, and installer spoofing, which may lead to
information leakage or the incorrect execution of actions by LLMs [127]. Radosevich et al. [292]
identified that MCP servers are particularly vulnerable to malicious code execution (MCE), remote
access control (RAC), and credential theft (CT). Protocols like A2A, ACP, and ANP, designed for
communication between agents, face distinct challenges such as identity spoofing (e.g., Agent Card
spoofing in A2A, DID spoofing in ANP), message tampering, unauthorized capability injection,
and session hijacking, impacting secure task delegation and coordination [71]. To mitigate these
protocol-specific vulnerabilities, research is exploring various defense mechanisms tailored to each
protocol’s interaction model and lifecycle, including authentication, auditing, secure configuration
strategies based on theoretical threat analysis, cryptographic signing of manifests and messages,
and robust access control mechanisms [71, 168, 254]. Although research on the security of these
emerging protocols remains limited, existing studies demonstrate that their security issues should
not be overlooked, and future work should place greater emphasis on addressing these challenges
across the diverse landscape of agent interoperability protocols.

5.3.2 Challenges. We categorize the key challenges in model integration into four main aspects:
prompt transformation, alignment in multimodal systems, multi-model collaboration,
and security concerns.

Prompt transformation. In both multimodal settings and LLM integration with external models
and tools, prompts are no longer limited to a single information source. As user input environments
become increasingly complex, inputs may include images, audio, text, and so on, which indicates
they need to be converted into a common modality (e.g., image-to-audio transformation). Similarly,
RAG and knowledge graphs contain vast amounts of structured and unstructured data, requiring
the extraction of relevant content for prompt construction. Consequently, transforming diverse
information into an input format that LLMs can effectively process is crucial.

Multimodal alignment. Achieving effective alignment across different modalities (e.g., text,
vision, and audio) remains a fundamental challenge in multimodal models. Failure to accurately
transform and synchronize information between modalities can lead to severe performance degra-
dation or hallucination effects. This alignment process requires not only semantic consistency but

, Vol. 1, No. 1, Article . Publication date: July 2025.

Software Engineering for Large Language Models: Research Status, Challenges and the Road Ahead 21

also the synchronization of internal representation spaces to facilitate cross-modal understanding.
While significant research has been conducted on aligning visual and textual information, studies
on other data types, such as sensor data and time-series information, remain underexplored.

Multi-model collaboration. The challenges associated with multi-model collaboration can be
broadly categorized into two key aspects. First, differences in model capabilities, preferences, and
underlying values must be aligned. Otherwise, discrepancies in understanding may lead to reason-
ing errors during collaboration. Second, coordination challenges arise in workflow management,
inter-model communication, and the allocation of computational resources. For instance, assigning
simpler tasks to less resource-intensive models while reserving complex tasks for more powerful
models can improve inference efficiency and reduce computational costs. However, real-world im-
plementations involve additional complexities, such as quantifying task difficulty, designing model
selection strategies, and managing concurrent execution across models. Addressing these challenges
requires significant advancements in multi-model coordination and scheduling mechanisms.

Multi-agent system scaling. During the scaling of multi-agent systems (MAS), two primary
challenges arise: the rapid increase in computational resource demands and the significant growth
in complexity of communication and coordination. When the number of agents grows, the system
becomes more resource-intensive. This is because even a single LLM consumes a lot of resources, and
adding more agents means extra computational and storage overhead for each one. Additionally, the
complexity of communication and collaboration also escalates rapidly with system expansion. Since
agents have autonomous decision-making and execution capabilities, ensuring the correctness and
consistency of their decisions becomes increasingly complex, exhibiting a nonlinear and potentially
exponential growth in complexity. Furthermore, cross-agent communication, complex decision-
making, task decomposition, and scheduling become critical and significantly more challenging in
large-scale systems. Thus, controlling computational and collaboration costs while scaling remains
a fundamental issue that must be addressed in the design of multi-agent systems.

Model integration security. A primary security threat in model integration is prompt injection
attacks, which can be exploited to extract sensitive information, inject misleading content, or
manipulate models into executing unintended actions. While model integration enhances overall
system capabilities, it also introduces the potential risks associated with such attacks, underscoring
the necessity for robust defense mechanisms. In addition to prompt injection targeting the models,
the various interaction protocols used in model integration also introduce new attack surfaces.
Protocols standardizing agent-to-external system communication, such as MCP, are susceptible
to risks like code injection, remote access control, and credential theft within their server imple-
mentations and communication channels, which can result in information leakage or incorrect
execution of actions by LLMs. Protocols facilitating agent-to-agent or multi-model communication
(e.g., A2A, ACP, ANP) face distinct security challenges related to ensuring message authenticity,
authorizing interactions between peers, and preventing malicious coordination. Although research
on the security of these emerging protocols is still in development, existing studies highlight the
need to develop appropriate authentication, auditing, and configuration mechanisms tailored to
each protocol’s specific interaction model to mitigate vulnerabilities across the integrated system.

5.3.3 Road Ahead. Although the challenges mentioned above may appear distinct, they are inher-
ently interconnected due to the nature of model integration, which involves coordinating multiple
models or integrating models with external tools. To collectively address these issues, we propose
an intelligent prompt and secure framework. This framework consists of three core mod-
ules: a prompt module, a routing module, and a security module, each of which presents
opportunities for future research and advancements.

, Vol. 1, No. 1, Article . Publication date: July 2025.

22 Hongzhou Rao, Yanjie Zhao, Xinyi Hou, Shenao Wang, and Haoyu Wang

Prompt module. This module serves two primary functions: prompt generation and prompt
filtering. The prompt generation process must facilitate cross-modal information transforma-
tion, extract relevant knowledge from external sources, and ultimately generate optimized input
prompts. To achieve this, the module must incorporate system monitoring, contextual understand-
ing, and adaptive decision-making. Furthermore, to ensure effective multimodal alignment, the
framework should align diverse data types [164] with LLM representation spaces and potentially
leverage token-free Transformer architectures [271] to enhance expressive capacity. In addition
to prompt generation, robust prompt filtering mechanisms are essential for preventing prompt
injection attacks. The module must filter potentially malicious or biased prompts before processing,
whether they originate from external sources or are generated by the LLM itself. Such defenses
are particularly critical in mitigating advanced attack strategies, as identified by Lee et al. [172],
where LLM-generated outputs can inadvertently function as adversarial prompts. To achieve this,
advanced content-aware techniques are needed to detect and filter malicious or biased content,
either based on predefined rules, LLM outputs, or patterns learned by LLMs from data.

Routing module. The routing module is responsible for orchestrating LLMs and other subsys-
tems within the framework. It must perform task decomposition, analyze task complexity, generate
execution pathways, and select appropriate models or subsystems to execute tasks either in parallel
or sequentially. Additionally, it dynamically manages computational resources, enabling efficient
scheduling and adaptive reasoning across multi-model, multimodal, and multi-agent systems,
thereby enhancing the model integration framework’s overall performance and problem-solving
capabilities. To achieve these objectives, different protocols and techniques are needed depending
on the nature of the interaction.

For standardizing the interaction between an Al model (agent) and external tools, data sources,
or services, often referred to as agent-tool invocation, leveraging the MCP is key. MCP provides a
unified interface standard for accessing tools, resources, and prompts, enabling the efficient man-
agement of tool and model invocation processes. This standardizes the flow of requests from agents
to external capabilities, allowing agents to seamlessly integrate diverse external functionalities by
simply adhering to the protocol. For coordination and collaboration between multiple agents or
models, often referred to as agent-to-agent or multi-model communication, specific communication
protocols are required to handle message exchange, task delegation, negotiation, and collaborative
execution. Protocols like A2A, ACP, and ANP are designed for various forms of inter-agent com-
munication, providing frameworks for performative messaging, capability discovery, and secure
peer interaction in different deployment contexts (e.g., within trusted organizational boundaries for
A2A, brokered communication for ACP, decentralized open networks for ANP). These protocols are
crucial for mitigating semantic inconsistencies and information transmission errors resulting from
heterogeneous communication methods among interacting agents or models, thereby enabling
the scalable coordination of multi-agent systems. Beyond communication protocols, achieving
robust coordination in multi-agent systems requires sophisticated scheduling and collaboration
mechanisms. Techniques from swarm intelligence such as bee algorithm, ant colony optimization
(ACO), and particle swarm optimization (PSO), as well as multi-agent game-theoretic models from
game theory, can be adopted to optimize task allocation, cooperation strategies, and autonomous
decision-making among agents (or models) within large-scale environments. These approaches com-
plement the communication protocols by providing the intelligence layer for complex multi-agent
coordination, thus driving LLM-based multi-agent systems toward greater efficiency, scalability,
and resource optimization.

Security module. Closely interacting with both the prompt and routing modules, the security
module acts as a critical protective layer against various threats in the integrated system. It mitigates
direct model risks such as prompt injection through techniques including self-supervised anomaly

, Vol. 1, No. 1, Article . Publication date: July 2025.

Software Engineering for Large Language Models: Research Status, Challenges and the Road Ahead 23

detection, static analysis, sandboxed inference, and reinforcement learning-driven adversarial
defense. Furthermore, it supports data isolation and secure interaction mechanisms within complex
workflows (including multi-model or multi-agent collaboration), preventing sensitive information
leakage and inhibiting the propagation of attacks between components.

Besides, securing the diverse interactions within this framework relies heavily on addressing
vulnerabilities in the underlying communication protocols. For agent-to-external system in-
teractions standardized by protocols like MCP, security concerns focus on securing the channel
between the agent and the tool server, which involves mitigating risks such as code injection,
remote access control, credential theft, and ensuring the integrity of tool invocations and data
exchange [127, 292]. To address these concerns, the security module can incorporate measures
such as firewall-based server protection, access control, and authentication for tool usage, as well
as logging and auditing of tool interactions [168, 254]. For agent-to-agent communication
and collaboration facilitated by protocols such as ACP, A2A, and ANP, security measures are
needed to ensure trustworthy interactions between autonomous agents. Challenges here include
verifying agent identity, ensuring message authenticity and integrity, authorizing peer-to-peer
actions, preventing unauthorized capability injection, and securing the coordination process itself.
These protocols incorporate mechanisms like digital signatures, strong authentication (e.g., DIDs,
mutual TLS), access control policies for agent skills, and secure session management [71]. The
security module can integrate and manage these protocol-specific security features to provide
threat detection and defense across all interaction types within the integrated system.

5.4 Model Compression

5.4.1 Research Status. Model compression aims to reduce the number of parameters or the memory
footprint of a model. We categorize it into three main approaches: quantization, KD, and pruning,
the same as [29, 206, 470].

Quantization techniques reduce the bit-width of LLM parameters to lower memory usage.
Post-training quantization methods typically target weights, activations, or KV cache, using either
floating-point or integer formats to reduce runtime memory requirements significantly. For instance,
Dettmers et al. [56] compressed both weights and activations to 8-bit integers. More aggressive
approaches, such as QulP [30] and KIVI [225], further reduce weights and KV cache to as few as
2 bits. To enhance compression effectiveness, methods such as COMET [212] and QServe [201]
simultaneously quantize weights, activations, and KV cache. However, aggressive quantization often
results in significant performance degradation. To address this issue, researchers have explored
retraining quantized models to mitigate performance loss, even if there is a cost of additional
training overhead. Techniques such as LLM-QAT [224], L4Q [143], and QLoRA [57] integrate KD
or PEFT to alleviate this overhead. L4Q [143] achieves post-training performance comparable
to fine-tuned models but is limited to weight quantization, restricting its overall compression
potential. Additionally, Huang et al. [136] reported severe performance degradation in quantized
versions of the LLaMA3 model, highlighting the limitations of current quantization techniques in
balancing model compactness and performance. These findings underscore the ongoing need for
advancements in quantization methodologies to ensure both efficiency and effectiveness.

KD aims to transfer knowledge from a more capable teacher model (TM) to a smaller student
model (SM), enabling the latter to achieve comparable performance with reduced computational
costs. The challenges in KD can be broadly categorized into two key aspects: (a) how to extract
knowledge and (b) how to learn the extracted knowledge effectively. A straightforward approach
to knowledge extraction is to provide the TM with input data and use its outputs as distilled knowl-
edge [283, 452, 465]. However, this method heavily depends on the capabilities of the TM [465]
and is constrained by the diversity and scale of the instruction set [186], potentially leading to

, Vol. 1, No. 1, Article . Publication date: July 2025.

24 Hongzhou Rao, Yanjie Zhao, Xinyi Hou, Shenao Wang, and Haoyu Wang

poor generalization in the SM [314, 315]. To address these limitations, researchers have integrated
data cleaning with synthetic data generation to improve instruction set quality [60, 360, 432]. Addi-
tionally, self-knowledge techniques, wherein the SM generates new knowledge without relying
on the TM, have been explored [37, 409]. However, self-knowledge methods are susceptible to
inherent biases and hallucinations [326, 406], posing significant challenges to their effectiveness.
Instruction following (IF) is a widely used technique in KD, yet it faces limitations, such as de-
pendency on high-quality datasets [186] and difficulty in capturing the TM’s reasoning process.
To overcome these challenges, techniques like chain-of-thought (CoT) prompting [260, 362] have
been employed to enhance the SM’s reasoning capabilities. Recently, Choi et al. [40] proposed a
method that integrates LLM reasoning decomposition and planning capabilities with knowledge
graph-augmented reasoning. Their approach, implemented in the lightweight framework DeDer,
successfully distills reasoning skills into a compact model, demonstrating the potential of KD to
enable resource-constrained devices to perform complex tasks.

Pruning aims to enhance model efficiency and reduce computational overhead by removing
redundant neurons or weights. It can be categorized into structured pruning, semi-structured prun-
ing, and unstructured pruning. Structured pruning methods focus on removing entire structures,
such as neurons, channels, or attention heads, to maintain computational efficiency. Ma et al. [235]
proposed a notable structured pruning approach, LLM-Pruner, which constructs a structural de-
pendency graph of the LLM, groups parameters accordingly, identifies unimportant groups for
pruning, and subsequently restores model performance using LoRA. This method requires only
590k samples and three hours of training. However, combining structured pruning with PEFT
introduces additional training overhead and can lead to performance degradation [453]. To mitigate
these issues, Zhao et al. [448] introduced an adaptive pruning strategy, which removes parame-
ters irrelevant to fine-tuning tasks from the pretrained model while incorporating task-specific
parameters via distillation, thereby improving LLM performance with reduced computational
overhead. Semi-structured pruning provides a balance between flexibility and efficiency by enforc-
ing structured sparsity patterns at the matrix level. NVIDIA introduced a 2:4 structured sparsity
technique, which retains 2 out of every 4 weights in matrix computations, effectively accelerating
inference [247]. However, this approach can inadvertently remove critical weights, resulting in a
noticeable degradation of accuracy [336]. To address it, Tan et al. [336] proposed a method that
selectively retains essential weights while maintaining the 2:4 sparsity ratio, thereby improving
accuracy retention.

5.4.2 Challenges. The aforementioned discussion on model compression highlights several key
challenges associated with quantization, KD, and pruning.

For quantization challenges, while existing techniques effectively reduce memory consump-
tion, they often lead to performance degradation, posing a fundamental trade-off between com-
pression efficiency and model accuracy. Balancing these two aspects remains an open challenge.
Recent advancements have pushed parameter bit-width to its lower limits, with some approaches
reducing it to as few as 2 bits. However, the precise relationship between quantization levels and
performance degradation remains unclear. Several studies [98, 135, 136] have conducted empirical
analyses on the impact of quantization on model performance. However, current investigations
remain insufficient, particularly in open-source models such as the LLaMA family. As noted by Jin
et al. [153] and Yao et al. [422], existing research primarily focuses on a limited range of models
and quantization techniques, leaving significant gaps in understanding the broader implications of
extreme quantization.

Regarding KD challenges, the primary challenges lie in both knowledge extraction and knowl-
edge learning. For knowledge extraction, direct input-based methods offer a straightforward

, Vol. 1, No. 1, Article . Publication date: July 2025.

Software Engineering for Large Language Models: Research Status, Challenges and the Road Ahead 25

approach; however, they often yield suboptimal training outcomes and weak generalization in SMs.
Alternative strategies, such as self-knowledge and instruction following, are hindered by biases,
hallucinations, and dataset limitations. In terms of knowledge learning, acquiring abstract capabili-
ties such as reasoning and generalization remains a significant challenge. While CoT prompting
has been employed to enhance reasoning abilities in SMs, research on improving other abstract
skills remains scarce, highlighting an area for further exploration.

Finally, pruning presents challenges primarily in parameter selection. The removal of essential
parameters can lead to severe performance degradation, yet accurately distinguishing between
critical and redundant parameters remains an open research problem. Developing more reliable
pruning criteria and adaptive selection mechanisms is crucial to mitigating the risks associated
with aggressive parameter reduction.

5.4.3 Road Ahead. The challenges mentioned above highlight the key limitations in model com-
pression. While these challenges are primarily studied within the domain of ML, they can also be
addressed from an SE perspective. Overall, achieving compact and efficient model compression
remains a critical objective for future advancements, necessitating deep optimization of quantiza-
tion, KD, and pruning, as well as their integration with other optimization techniques to achieve
complementary benefits.

Quantization. Existing quantization techniques struggle to simultaneously support weight, KV
cache, and activation quantization while maintaining model performance. If all three components
can be effectively quantized while leveraging KD or PEFT to recover performance losses, it would
enable a better trade-off between computational efficiency and model compactness. Additionally,
conducting a comprehensive empirical study on the impact of different quantization levels on model
performance could provide valuable insights for future research. Further investigation is needed to
assess the effects of quantization across various downstream tasks, quantization techniques, and
model sizes. Developing an automated evaluation framework or plugins for quantization impact that
is capable of fine-grained performance loss analysis and automated optimization recommendations
would be a significant step forward.

KD. Beyond single-model KD, future research should explore the efficient integration of knowl-
edge across multiple models and diverse sources. Given the dynamic and multi-source nature of
real-world knowledge, designing a distributed KD training framework that supports multi-node
collaboration and asynchronous updates could significantly enhance LLMs’ generalization and
knowledge update capabilities. Such a framework would be particularly beneficial in federated
learning scenarios, enabling efficient KD in decentralized environments. However, despite extensive
research in this area [275, 290], several engineering challenges remain, including issues related to
data heterogeneity [131, 418, 442, 472], device heterogeneity [252, 318], and high communication
costs [90, 91]. Furthermore, to incentivize knowledge sharing among different nodes, blockchain
technology could be integrated into the framework, which would not only provide a mechanism
for incentivization but also enable knowledge traceability, mitigating the risks associated with
malicious nodes injecting harmful information.

Pruning. Semi-structured pruning techniques have demonstrated promising potential, and
future research may focus on intelligent weight selection, which requires a deeper understanding
of which weights and knowledge are essential for model functionality, which could potentially
leverage loss functions, activation functions, or other indicators. Zhang et al. [444] explored the use
of loss functions to distinguish between domain-specific and general knowledge, paving the way for
more precise pruning strategies. Additionally, integrating model testing techniques could enhance
pruning effectiveness by monitoring performance, which would help prevent severe degradation

, Vol. 1, No. 1, Article . Publication date: July 2025.

26 Hongzhou Rao, Yanjie Zhao, Xinyi Hou, Shenao Wang, and Haoyu Wang

or the emergence of errors, thereby enabling dynamic pruning adjustments to maintain model
reliability while maximizing efficiency.

5.5 PEFT

5.5.1 Research Status. PEFT is a technique that updates only a subset of a model’s parameters
during fine-tuning, thereby achieving high efficiency while avoiding full-parameter modifications.
We categorize PEFT methods into three main types: additive, reparameterized, and selective
approaches, the same as [114, 389].

Additive PEFT techniques preserve the original model parameters while introducing additional
trainable parameters to adapt the model to downstream tasks. Representative methods in this
category include adapter layers and soft prompt. The trained adapter modules are inserted into
the model as additional Transformer layers, reducing the number of modified parameters. Based
on the insertion strategy, adapters can be classified into sequential adapters and parallel adapters.
Sequential adapters primarily focus on adapting to specific tasks, while parallel adapters com-
bine the outputs of both the adapter and the main model, making them better suited for complex
scenarios [161]. However, adapters introduce additional modules, increasing model complexity,
maintenance overhead, and inference latency [302]. In contrast, the soft prompt method appends
a set of learnable vectors, aligned with the embedding layer, to the input prompt. These vectors
guide the LLM to perform downstream tasks more effectively without modifying the model archi-
tecture [354]. Unlike adapters, soft prompt avoid additional structural complexity and inference
overhead and can be transferred between different models and tasks [351, 400]. However, soft
prompt do not fundamentally enhance the model’s capabilities, as they primarily rely on the LLM’s
inherent reasoning capabilities [365]. Moreover, soft prompt are vulnerable to adversarial attacks,
particularly prompt injection attacks [258, 419]. Compared to standard prompt-based attacks, soft
prompt manipulations are more likely to bypass a model’s safety alignment mechanisms and induce
unintended behaviors [308, 415]. For example, the malicious soft prompt can lead to unintended data
leakage, including the inadvertent exposure of sensitive information from the training corpus [162].

Selective PEFT fine-tunes a model by masking a portion of its parameters, similar to pruning. It
can be broadly categorized into structured masking and unstructured masking, both of which aim to
identify an optimal subset of parameters for fine-tuning. Representative approaches include gradient-
based methods [31, 181, 411], data-driven methods [52, 63], and search-based methods [25, 462].
The primary advantage of selective PEFT is that it does not increase the inference cost of the
LLM, making it an attractive alternative to other PEFT techniques. However, the complexity
of parameter selection strategies introduces significant challenges in model development and
debugging. Additionally, Ploner et al. [287] observed that randomly selected parameter subsets such
as those employed in LoRA often yield performance comparable to carefully designed selection
strategies. Their findings raise questions regarding the practical benefits of extensive debugging
efforts, given the marginal improvements achieved over random parameter selection.

Reparameterized PEFT modifies the model’s parameterization to enable more efficient adap-
tation. Among these methods, LoRA is a widely adopted approach. LoRA employs low-rank
decomposition to train a separate module, which is then used to reparameterize specific model
weights. A single model can incorporate multiple LoRA-trained modules, allowing for the selection
of different module combinations during inference based on specific requirements. Despite its
efficiency, LoRA presents two primary challenges: improving LoRA’s performance and selecting
appropriate LoRA modules. (a) Performance optimization. Numerous techniques have been proposed
to enhance LoRA’s effectiveness, including dynamic rank adjustment [346, 445], earning rate opti-
mization [118], and regularization strategies to mitigate overfitting [200, 359]. However, the extent
of these improvements remains constrained. Zhang et al. [439] found that LoRA’s performance

, Vol. 1, No. 1, Article . Publication date: July 2025.

Software Engineering for Large Language Models: Research Status, Challenges and the Road Ahead 27

is predominantly influenced by the inherent capabilities of the base model, suggesting that opti-
mizations at the LoRA level offer only limited benefits. (b) Module selection and inference efficiency.
Optimizing LoRA module selection can significantly reduce LLM inference latency and enhance
overall performance. For instance, Kong et al. [166] observed that the insertion of LoRA modules
leads to fragmented CUDA kernel calls, severely degrading inference efficiency. To address this,
they proposed a novel token-wise routing strategy to minimize unnecessary kernel invocations.
Similarly, Wu et al. [379] introduced a dynamic switching mechanism between merged and un-
merged models to reduce inference latency in model as a service (MaaS) scenarios. Their approach
further integrates batching techniques and a request-adapter co-migration strategy to improve
GPU resource utilization and overall service performance. (c) security considerations. Despite its
advantages, LoRA introduces security concerns due to the additional fine-tuning it requires. Liu
et al. [208] demonstrated that open-source LoRA adapters are vulnerable to backdoor attacks.
Moreover, Xu et al. [128] highlighted that even when training datasets do not contain malicious
data, aligned LLMs remain susceptible to adversarial threats. To mitigate these risks, they proposed
Safe LoRA, which constrains LoRA updates using a projection operation, ensuring that parameter
updates align with a predefined security-preserving matrix, thereby enhancing robustness against
adversarial manipulations.

5.5.2 Challenges. The research mentioned above highlights several key challenges associated with
PEFT. We categorize these challenges as follows:

Additive PEFT challenges. While adapter layers facilitate seamless integration with LLMs,
they also introduce additional complexity in system maintenance. The selection, combination,
and interconnection of different adapter layers pose significant engineering challenges, yet they
also present opportunities for further advancements. Moreover, the insertion of adapter layers
inevitably increases inference latency, which can be detrimental to latency-sensitive applications.
In contrast, soft prompt mitigate these performance concerns but raise security and privacy risks,
as they may inadvertently expose sensitive or private data from the training process.

Selective PEFT challenges. The primary challenge in selective PEFT lies in selecting the
appropriate parameters. Simple selection strategies may fail to achieve optimal fine-tuning results,
whereas more sophisticated selection mechanisms not only introduce additional development
and debugging overhead but also do not necessarily outperform random selection, which raises
concerns regarding the feasibility and practical benefits of selective PEFT.

LoRA challenges. As a representative reparameterized PEFT method, LoRA enables efficient
fine-tuning but faces limitations related to inference efficiency and security vulnerabilities. The
integration of LoRA could lead to fragmented CUDA kernel calls, thereby reducing inference effi-
ciency. Additionally, LoRA-trained adapters have been demonstrated to be susceptible to backdoor
attacks. Although ongoing research aims to enhance LoRA’s robustness and efficiency, substantial
challenges remain, limiting its applicability in security-critical and latency-sensitive scenarios.

5.5.3 Road Ahead. To address the challenges mentioned above, there are several research directions
for further exploration. For challenges associated with adapter layer insertion, an adaptive adapter
architecture could be developed to facilitate adapter selection, composition, and integration.
Hu et al. [130] proposed a broad adapter integration framework. However, their approach lacks
considerations for composition design and optimization at deployment. Future research could focus
on automated optimization, modularization, and standardization of adaptive adapter architectures.
For instance, standardized APIs for adapter layers, dynamic adapter loading mechanisms that
activate specific adapters only when necessary, and optimized caching strategies could significantly
enhance inference efficiency. Additionally, automatic search techniques could be employed to
determine the optimal adapter combinations, adapter depth, and activation strategies. While such

, Vol. 1, No. 1, Article . Publication date: July 2025.

28 Hongzhou Rao, Yanjie Zhao, Xinyi Hou, Shenao Wang, and Haoyu Wang

techniques have been extensively studied in vision models [426, 429, 467], their application in
LLMs remains underexplored. Notably, research on adaptive architectures is also applicable to
LoRA, since it can be seen as a special form of adapter that modifies the original Transformer’s
weights instead of introducing additional layers. For example, Wu et al. [379] proposed a method
for dynamically merging and migrating LoRA adapters to enhance the throughput of LLM servers.

For challenges related to parameter selection in selective PEFT, similar to pruning, parameter
testing and recommendation tools could be leveraged to evaluate the impact of different
hyperparameter configurations on model performance, which would enable the development of
more effective parameter selection strategies while also facilitating the identification of optimal
hyperparameter combinations.

PEFT security presents two key challenges: (a) soft prompt may expose private data, and (b)
adapters (including LoRA adapters) are vulnerable to backdoor attacks. To mitigate risks associated
with soft prompt, soft prompt filtering techniques, as discussed in §5.3.3, could be extended
to prevent inadvertent data leakage. These techniques must ensure that filtered prompts retain
both security and semantic fidelity. However, unlike standard prompt-based attacks, soft prompt
manipulate the embedding layer, making them more challenging to defend against using traditional
LLM security mechanisms [308]. Therefore, further research on protective measures for embedding
layers is necessary. Regarding backdoor vulnerabilities in adapters, a potential solution could
involve data filtering and detection inspired by existing research on mitigating data poisoning in
open-source models. For instance, verifying whether LoRA’s training data has been compromised
could leverage data provenance techniques, such as traceability analysis and trusted data sources, as
outlined in §4.2.3. Additionally, adversarial training could be employed to enhance the robustness
of LoRA-based adaptations, thereby improving security and reliability.

6 TESTING AND EVALUATION

The testing and evaluation of LLMs pose multifaceted challenges, as shown in Figure 7. Inspired
by Chang et al. [26], we propose that these challenges can be systematically analyzed through
three critical dimensions: what, where, and how to test and evaluate LLMs. These dimensions
extend beyond the technical assessment of model performance to encompass broader considerations
related to model deployment and real-world usage. The complex relationship between these factors
highlights the need for systematic methodologies and innovative evaluation frameworks to ensure
the reliability, robustness, and fairness of LLMs.

'd aYd N\(
§ 6.1 What to Test and Evaluate § 6.2 Where to Test and Evaluate § 6.3 How to Test and Evaluate
§ 6.1.2Ch § 6.2.2 Challenges
1. allenges I § 6.3.2 Challenges

‘ Limited Benchmark Quality

Capabilities Assessment Challenges | Automated Evaluation Process

‘ Data Contamination ‘

Inconsistent Evaluation Results § 6.3.3 Road Ahead

§ 6.1.3 Road Ahead § 6.2.3 Road Ahead ———— || ([Ropust and Reliable LLM-as-a-Judge

Frameworks

Comprehensive Evaluation Platform

Diverse and Scientifically Grounded
Evaluation Frameworks

Data Perturbation Human-LLM Collaborative Evaluation ‘

. J\ J\ J

Fig. 7. Challenges and Road Ahead in §6 Testing and Evaluation.

, Vol. 1, No. 1, Article . Publication date: July 2025.

Software Engineering for Large Language Models: Research Status, Challenges and the Road Ahead 29

6.1 What to Test and Evaluate

6.1.1 Research Status. The evaluation of LLMs spans multiple dimensions. From an application-
driven perspective, researchers have explored LLM performance across diverse domains, including
medicine [19, 50], education [404], SE [211], and finance [386]. In domains requiring advanced cog-
nitive capabilities or creativity, studies have assessed LLMs’ effectiveness in scientific research [332]
and creative tasks [24]. Additionally, evaluations have focused on intrinsic model attributes, such
as bias [301], reasoning capabilities [369], and planning capabilities [251]. Despite these efforts,
there are still two significant challenges:

Difficulty in assessing certain capabilities. Many LLM capabilities are inherently difficult
to quantify. Generative tasks, such as dialogue generation and writing, exhibit a high degree of
subjectivity, making them challenging to evaluate using traditional objective metrics (e.g., accuracy).
Scientifically quantifying abstract factors such as “creativity,” “relevance,” or “user satisfaction”
remains an open research problem [158]. Additionally, certain attributes, such as reasoning, are
difficult to observe directly. It is often unclear whether an LLM derives its responses through actual
reasoning processes or merely retrieves relevant information from its knowledge base [12, 347].

Inconsistency in evaluation results. Variations in evaluation methodologies and metrics
across different domains and tasks frequently result in inconsistencies in model performance
assessments. For example, Gandhi et al. [92] identified discrepancies in LLM reasoning test re-
sults, highlighting underlying limitations in existing evaluation frameworks. Moreover, Greenblatt
et al. [101] documented an issue where models adhere to training objectives during fine-tuning but
fail to maintain this alignment in different scenarios, a phenomenon referred to as alignment faking.
These inconsistencies raise concerns regarding the validity and robustness of current evaluation
methodologies [92], underscoring the need for more comprehensive and rigorous evaluation.

6.1.2 Challenges. Capabilities assessment challenges. While certain LLM capabilities, such as
code completion and mathematical computation, can be evaluated using manually designed test
cases, more abstract skills such as reasoning, writing, and planning pose significant challenges
for traditional evaluation methodologies. This difficulty arises from the inherent complexity of
designing effective test cases, as well as the absence of well-defined quantitative metrics for
objectively measuring these higher-order cognitive capabilities.

Inconsistent evaluation results. Another challenge is that assessments of whether an LLM
possesses a particular capability or adheres to alignment expectations often yield inconsistent
results. One possible explanation is the absence of scientifically rigorous evaluation methodologies,
which can lead to discrepancies in judgment across different evaluation frameworks. Another
factor is the phenomenon of alignment faking [101], where models appear to comply with expected
behaviors during evaluation but deviate from them in different scenarios, raising concerns about
the reliability of existing evaluation techniques.

6.1.3 Road Ahead. The challenges mentioned above highlight the limitations of current evaluation
methodologies. Future research could focus on developing diverse and scientifically grounded
evaluation frameworks that incorporate cross-domain methodologies to ensure comprehensive,
reliable, and objective assessments of LLM performance across varied capabilities and tasks.
Cross-domain methodologies for capability assessment. A promising direction for improv-
ing the evaluation of LLM capabilities is the integration of cross-domain methodologies, which
can enhance the scientific rigor of assessment techniques. This cross-domain approach holds
significant potential. For example, in terms of KD, insights from educational science could be
leveraged to assess a TM’s effectiveness in knowledge transfer or an SM’s capability to acquire
and generalize learned information. Similarly, logic-based analysis could provide a more rigorous

, Vol. 1, No. 1, Article . Publication date: July 2025.

30 Hongzhou Rao, Yanjie Zhao, Xinyi Hou, Shenao Wang, and Haoyu Wang

framework for evaluating reasoning capabilities. By adopting scientifically rigorous evaluation
methods, researchers can not only improve the assessment of abstract capabilities but also mitigate
inconsistencies in evaluations.

Enhancing alignment evaluation through different testing environments. The emergence
of alignment faking [101] underscores the influence of evaluation environment inconsistencies,
wherein models demonstrate different behaviors under varying conditions. This phenomenon sug-
gests that future evaluation methodologies should account for the impact of varying environments
on evaluation outcomes, ensuring consistency and reliability across real-world usage scenarios.
Developing adaptive evaluation frameworks that dynamically adjust test scenarios based on user in-
puts and interaction patterns could improve the robustness of alignment assessments. Additionally,
integrating longitudinal evaluation strategies, where models are assessed over extended periods
rather than in isolated test cases, could provide deeper insights into the stability of alignment and
behavioral consistency. By grounding evaluations in different interaction environments, researchers
can ensure more reliable assessments of LLM alignment and generalization capabilities.

6.2 Where to Test and Evaluate

6.2.1 Research Status. Numerous benchmarks have been developed to evaluate the capabilities
of LLMs, each exhibiting distinct characteristics. Many of these benchmarks focus on assessing
only a subset of LLM capabilities. For instance, code-related benchmarks such as xCodeEval [160],
CoderUJB [436], and CrossCodeEval [62] primarily evaluate code understanding, generation, trans-
lation, and retrieval. Similarly, reasoning-oriented benchmarks like PlanBench [347] and Legal-
Bench [106] target reasoning capabilities, while multimodal benchmarks such as SEED-Bench [175]
and MM-SafetyBench [219] assess the performance of multimodal LLMs. Even within these spe-
cialized domains, benchmarks often focus on narrower subtasks. For example, within code-related
evaluations, benchmarks like HumanEval [36], ClassEval [66], and EvoCodeBench [182] assess
Python code generation, whereas JavaBench [20] and SWE-Bench-Java [435] evaluate Java code
generation and repair, respectively.

Despite their utility, existing benchmarks suffer from several limitations. First, limited test case
coverage restricts their comprehensiveness, as many benchmarks contain only a small number of
test cases, reducing their capability to provide a holistic assessment of LLM capabilities. Additionally,
the lack of standardized benchmark construction guidelines results in inconsistent dataset quality,
leading to fragmented evaluation methodologies. As noted by McIntosh et al. [243], many existing
benchmarks fail to capture nuanced aspects such as bias, genuine reasoning, and adherence to
cultural and ideological norms.

Another significant challenge is data contamination, where test cases from benchmarks may
have been seen by LLMs during training, leading to unrealistically high evaluation scores and
overestimated model capabilities. This issue arises due to overlaps between real-world data used
for benchmark construction and LLM training datasets. Even manually curated benchmarks such
as HumanEval have been found to contain instances that newer models have encountered during
training [298, 410].To mitigate this issue, some studies have proposed ensuring that benchmark
data is sampled after the release of LLMs [81, 160]. However, these efforts have proven insufficient,
as contamination can still occur when newer models are trained on datasets that include older
benchmark samples [21, 410]. Data augmentation has gained attention as a potential solution, as it
can generate novel data instances that were not present in the original dataset. Zhu et al. [466]
introduced a psychometric-inspired data augmentation method to evaluate LLMs from multiple
perspectives by modifying existing datasets. Additionally, researchers have leveraged LLM-based
methods [384] to generate augmented datasets, taking advantage of LLMs’ advanced language
understanding and generation capabilities.

, Vol. 1, No. 1, Article . Publication date: July 2025.

Software Engineering for Large Language Models: Research Status, Challenges and the Road Ahead 31

Ultimately, the lack of standardized benchmark usage guidelines leads to significant variability
in evaluation quality and scope, resulting in divergent and sometimes inconsistent assessment
outcomes. To address this, it is essential to develop a standardized evaluation framework that
objectively assesses the reliability, scope, and validity of benchmark-based evaluations. In general,
these limitations highlight the need for comprehensive research to develop more robust bench-
marks, establish effective anti-contamination mechanisms, and create standardized assessment
methodologies to enhance the reliability and fairness of LLM evaluations.

6.2.2 Challenges. Limited benchmark quality. While the number of benchmarks for evaluating
LLMs has grown rapidly, many of them still face fundamental quality limitations. First, their scope
is often restricted, even within a specific capability domain; existing benchmarks frequently fail to
provide comprehensive coverage. Second, there is a notable difficulty distribution imbalance in
test cases—some benchmarks are excessively challenging, while others are too simplistic, making
it difficult to accurately assess an LLM’s actual capabilities. Third, benchmarks rapidly become
outdated, as LLMs continue to advance, many existing benchmarks lose their effectiveness over
time, necessitating continuous updates and refinements to remain relevant.

Data contamination. As discussed before, data contamination can significantly distort evalua-
tion results by introducing test cases that LLMs may have seen during training. Although mitigation
strategies, such as post-release sampling and sample rephrasing, have been proposed, these ap-
proaches remain imperfect, highlighting the need for more robust methodologies that can effectively
minimize data contamination while ensuring the validity and reliability of assessments.

6.2.3 Road Ahead. As LLMs continue to evolve, the limitations of existing evaluation benchmarks
will persist, posing ongoing challenges. However, the development of a comprehensive evaluation
platform could significantly mitigate these issues. Such a platform would provide a dedicated
infrastructure for benchmark maintenance, facilitating continuous updates and the integration of
new evaluation datasets. By enhancing benchmark reliability and diversity, this approach could
help address the inherent shortcomings of current evaluation methodologies. While platforms such
as Hugging Face [76] offer shared evaluation datasets, they lack effective dataset management,
systematic benchmark updates, and continuous integration capabilities. Consequently, evaluation
dataset quality remains inconsistent, limiting their ability to ensure benchmark reliability. To
overcome these challenges, future research should focus on designing an adaptive benchmark
management system that enables automated dataset curation, real-time benchmark refinement,
and the dynamic integration of newly proposed evaluation metrics.

Additionally, since many LLM training datasets are not publicly available, the risk of data
contamination remains a critical concern. To address this, data perturbation techniques could
provide a potential solution. By transforming existing benchmark samples into novel representations
while preserving their original semantic meaning, these techniques could generate test cases that
are distinct from those encountered during model training. This approach would help reduce the
likelihood of evaluation biases, regardless of whether the original benchmark data is sourced from
real-world datasets or synthetically generated.

6.3 How to Test and Evaluate

6.3.1 Research Status. In the evaluation of LLMs, certain capabilities, such as fill-in-the-middle
(FIM) performance in the coding domain [61, 97, 218, 381], can be assessed through the automated
execution of test cases, yielding objective pass rate metrics. However, more abstract capabilities, such
as creativity and reasoning, are significantly more challenging to evaluate automatically and often
require human judgment [24, 320, 353]. This reliance on manual evaluation introduces two primary
issues. First, human judgment is subjective, leading to inconsistencies and reduced reliability in

, Vol. 1, No. 1, Article . Publication date: July 2025.

32 Hongzhou Rao, Yanjie Zhao, Xinyi Hou, Shenao Wang, and Haoyu Wang

evaluation outcomes. Second, manual assessment is both time-consuming and labor-intensive, mak-
ing large-scale evaluations impractical and limiting the comprehensiveness of assessments. These
challenges highlight the need for developing more scalable and objective evaluation methodologies.

6.3.2 Challenges. Automated evaluation process. While certain LLM capabilities can be as-
sessed using automated tools, more abstract capabilities such as creativity and reasoning remain
challenging to evaluate fully automatically. As a result, manual assessment is often required, intro-
ducing subjectivity that reduces the accuracy and reliability of evaluation outcomes. Moreover, the
reliance on human judgment limits the feasibility of conducting large-scale assessments, posing a
significant barrier to comprehensive and scalable LLM evaluation.

6.3.3 Road Ahead. Given the powerful capabilities of LLMs, LLM-based evaluation methods,
commonly referred to as LLM-as-a-Judge, have gained increasing attention [41, 116, 180, 202, 358].
However, these methods are inherently influenced by the biases present in LLMs [169, 372, 424], as
well as their intrinsic limitations [348, 372], which may lead to inaccurate evaluation outcomes.
Therefore, a key research direction is the development of more robust and reliable LLM-as-a-
Judge frameworks, which includes strategies to mitigate biases in evaluation and the integration of
multi-model and multi-modal approaches to enhance fairness and reliability. By leveraging diverse
models and modalities, these methods could reduce individual model biases and improve overall
assessment accuracy. Another promising direction is human-LLM collaborative evaluation,
which serves as a compromise between full automation and evaluation accuracy. The goal of this
approach is to balance the efficiency of automated evaluation with the careful judgment of human
evaluators, thereby producing LLM assessments that are both reliable and interpretable.

7 DEPLOYMENT AND OPERATIONS

As discussed in §5.3, the deployment of LLMs presents several challenges, including computational
resource constraints, deployment architecture design, and security and privacy concerns. To sys-
tematically explore these challenges, we classify LLM deployment into three categories based on
the location of computational resources: cluster deployment, edge deployment, and hybrid
deployment, which is shown in Figure 8.

(AYd AY4 \
§ 7.1 Cluster Deployment § 7.2 Edge Deployment § 7.3 Hybrid Deployment
§ 7.1.2 Challenges § 7.2.2 Challenges § 7.3.2 Challenges
Resource Management | Hardware Constraints | | Device Collaboration |
Inference Latency
Energy Efficiency | Platform Heterogeneity | | Data Security |
Security and Privacy | Security Risks |
§ 7.3.3 Road Ahead
§ 7.1.3 Road Ahead § 7.23Road Ahead — | Collaborative Optimization Schemes |
| Efficient Scheduling Algorithm |
- - - ‘ General Deployment Frameworks l |Cryptographic and Federated Learning|
Privacy-Preserving and Security
Risk Assessment Frameworks |Secure TEE-Based LLM Deployment| |Prompt Encoding-Decoding Technique|
(. J\ VAN J

Fig. 8. Challenges and Road Ahead in §7 Deployment and Operations.

7.1 Cluster Deployment

7.1.1 Research Status. Cluster deployment refers to deploying models in high-performance com-
puting clusters, such as the cloud, to leverage distributed computing for large-scale inference. While

, Vol. 1, No. 1, Article . Publication date: July 2025.

Software Engineering for Large Language Models: Research Status, Challenges and the Road Ahead 33

this approach enables efficient processing of large-scale requests, it also introduces significant
technical and operational challenges.

Resource management. Managing computational resources in a distributed environment is
inherently complex, particularly due to the need for efficient parallelization across heterogeneous
hardware (e.g., GPUs, TPUs). To keep systems responsive while evenly distributing tasks, there’s
a need for smart scheduling methods and flexible resource scaling [451]. Hisaharo et al. [123] re-
designed the cluster computing architecture of GPT-Neo and optimized software implementations
to enhance inference efficiency. Similarly, Zhao et al. [451] proposed an adaptive algorithm for op-
timizing LLM inference in heterogeneous environments by dynamically adjusting mixed-precision
quantization and GPU allocation strategies to improve throughput. Additionally, LLM-Pilot [171]
introduced a predictive model that recommends cost-effective hardware configurations, further
improving resource utilization.

Inference latency. Despite the high throughput of cluster-based deployment, ensuring con-
sistently low-latency responses under high-concurrency conditions (e.g., thousands of simultane-
ous requests) remains a significant challenge. Optimized batching strategies, model partitioning
techniques (e.g., pipeline heterogeneity [120]), and hardware-aware kernel fusion are commonly
employed to mitigate computational bottlenecks. Local checkpoint storage [89] and splitwise
techniques [279] have been proposed to enhance inference efficiency. However, while checkpoint
storage reduces redundant computation, it increases storage overhead, whereas inter-stage com-
putation transfers in splitwise techniques offer only limited latency reductions. Sarathi-Serve [7]
introduced chunked-prefill and stall-free scheduling techniques, significantly reducing inference
latency under high-throughput conditions, with greater optimizations observed for larger models,
suggesting their scalability benefits. Zhang et al. [443] explored collaborative edge computing
to partition clusters and employed dynamic programming to minimize latency and maximize
throughput. However, cross-partition data transfers introduce potential privacy risks, which will
be discussed later.

Energy efficiency. The substantial energy consumption associated with training and inference
on GPU/TPU clusters necessitates effective hardware utilization and memory optimization. To
address this issue, Wilkins et al. [376] proposed a technique that dynamically allocates computational
resources based on token input-output ratios, thereby reducing energy consumption. Hisaharo
et al. [123] and Stojkovic et al. [328] introduced optimization algorithms for dynamically managing
inference resources to lower energy consumption. However, the search space of such algorithms
remains large, prompting Maliakel et al. [240] to explore key parameters affecting energy efficiency
across different LLMs and tasks. Their findings highlight the need for task-specific hardware
optimizations to enhance efficiency further. Additionally, Hewage et al. [122] identified CPU aging
as a contributing factor to increased energy consumption and proposed optimization strategies
aimed at extending CPU longevity to reduce energy usage.

Security risks. Cluster-based LLM deployment is susceptible to security threats, including
adversarial attacks on exposed APIs and data leakage in multi-tenant environments [53]. Yang
et al. [408] found that LLM service providers often optimize inference efficiency by sharing KV
caches, inadvertently exposing user privacy. Furthermore, Soleimani et al. [322] demonstrated
vulnerabilities in speculative decoding optimizations, introducing a novel side-channel attack
capable of extracting LLM token information from encrypted transmissions, such as token size.
To mitigate these risks, encryption techniques such as multi-party computation (MPC) [295],
homomorphic encryption (HE) [474], and TEE [249] have been applied to LLM inference. However,
while these methods enhance privacy protection, they introduce significant computational overhead,
resulting in increased inference latency, which limits their practicality in real-world applications.

, Vol. 1, No. 1, Article . Publication date: July 2025.

34 Hongzhou Rao, Yanjie Zhao, Xinyi Hou, Shenao Wang, and Haoyu Wang

Additionally, handling non-linear computations such as the softmax function remains a significant
challenge in encrypted LLM inference [474].

In addition, weak authentication mechanisms and the imperfect of LLM deployment frameworks
introduce further security concerns. Pesati et al.[284] found that unreliable authentication mecha-
nisms can lead to LLMs being hijacked or manipulated, posing serious security risks. Hou et al.[125]
analyzed several popular LLM deployment frameworks such as ComfyUI [44] and Ollama [265],
and identified widespread model information disclosure vulnerabilities. These issues can also lead
to unauthorized access, exploitation of system vulnerabilities, and other security threats.

7.1.2 Challenges. As discussed in §7.1.1, the challenges of LLM cluster deployment can be catego-
rized into the following four aspects.

Resource management. Efficient resource management is crucial in heterogeneous and dis-
tributed environments, requiring sophisticated scheduling algorithms and dynamic scaling mecha-
nisms to balance concurrency and inference latency. The challenge of handling GPUs, TPUs, and
other specialized hardware makes performance tuning more difficult, requiring flexible resource
allocation methods that adapt to different system demands.

Inference latency. Minimizing inference latency is essential not only for improving user
experience but also for reducing operational costs. However, optimizing LLM inference presents
a systemic engineering challenge that involves architectural design, workload distribution, and
hardware utilization. Techniques such as model partitioning, batching strategies, and pipeline
parallelism have led to noticeable improvements in performance. However, they still face limitations
in scalability and hardware efficiency, leaving many areas open for further refinement.

Energy efficiency. LLM inference demands substantial computational resources, resulting in
high energy consumption. Existing energy-saving strategies include optimizing resource allocation,
extending the lifespan of hardware, and implementing efficient scheduling policies. However, given
the vast optimization space, determining the optimal configuration remains a significant challenge.

Security and privacy. Cluster-based LLM deployment introduces security and privacy risks,
including potential data leakage due to shared KV caches and API calls. Issues such as weak
authentication, information disclosure, and unauthorized access further highlight the diversity
and complexity of LLM security challenges. Addressing these issues cannot rely on patching
individual vulnerabilities or adopting traditional security technologies such as encryption. Instead,
it requires a comprehensive security strategy that combines robust access control, fine-grained API
governance, secure configuration management, and continuous monitoring. Moreover, securing
LLM deployments should be treated as a system-level problem, involving coordination across
model architecture, serving infrastructure, and user interaction layers to ensure a defense-in-depth
approach.

7.1.3 Road Ahead. We categorize the challenges mentioned above into two key areas: LLM cluster
inference optimization and LLM cluster inference privacy and security concerns.

For LLM inference optimization, existing approaches to addressing high concurrency, low latency,
and energy efficiency primarily focus on scheduling design and architectural optimization, making
these areas critical for further research. However, the vast number of optimization factors results
in a huge search space, complicating the identification of an optimal configuration. A crucial future
direction is the development of an efficient scheduling algorithm capable of dynamically explor-
ing this search space and autonomously determining resource allocation and real-time scheduling
strategies. Such an algorithm should be designed to optimize multiple objectives simultaneously,
ensuring high concurrency, low latency, and reduced energy consumption while adapting to varying
workloads and hardware configurations.

, Vol. 1, No. 1, Article . Publication date: July 2025.

Software Engineering for Large Language Models: Research Status, Challenges and the Road Ahead 35

Concerning privacy and security concerns, establishing a comprehensive privacy-preserving
and security risk assessment framework will be essential in the future. Regarding privacy
preservation, differential privacy techniques [343, 447] show promise by introducing controlled
noise into prompts or token representations, obscuring sensitive information. Such techniques offer
configurable privacy settings that balance data confidentiality with model utility, thus enhancing
the practicality of secure LLM inference. Regarding security risk assessment, it is equally essential
to incorporate mechanisms for identifying, assessing, and mitigating security threats. This includes
developing unified identity and access management frameworks to enforce fine-grained, role-based
permissions, ensuring minimal privilege assignment, and providing standardized authentication
interfaces to facilitate integration with third-party services. Additionally, specialized security
analysis tools, such as static configuration analyzers, automated endpoint scanning, and risk
assessment utilities, should be introduced to systematically address issues related to configuration
leakage and interface exposure. These integrated efforts collectively reinforce the robustness of
LLM deployment frameworks.

7.2 Edge Deployment

7.2.1 Research Status. Edge deployment refers to deploying LLMs on edge devices near the data
source, such as smartphones, IoT devices, and edge servers, referred to as on-device LLMs, rather
than relying on centralized cloud infrastructure. This approach alleviates the computational burden
on cloud-based LLM services while enhancing the quality of commercial LLM applications. However,
it introduces challenges, primarily due to memory and computational resource constraints [58].

Hardware constraints. Edge devices typically have limited computing resources (e.g., mobile
CPUs and GPUs), restricted memory capacity, and energy constraints, necessitating the use of model
compression techniques. However, these techniques often come at the cost of reduced accuracy or
robustness. To address this issue, Ma et al. [233] proposed a quantization technique where each
parameter takes values from {-1,0,1}, achieving significant improvements in memory efficiency,
inference latency, energy consumption, and throughput. Similarly, Li et al. [184] introduced four
techniques, providing diverse strategies for improving LLM deployment on mobile devices.

Platform heterogeneity. The deployment of LLMs on edge devices is further complicated by
platform heterogeneity, as models must be compatible with diverse architectures (e.g., ARM-based
chips, NPUs). Several existing solutions facilitate cross-platform deployment. Llama.cpp [96] is a
C++ library that supports LLM deployment across various hardware platforms, integrating integer
quantization and GPU acceleration. MNN [149], a mobile neural network framework, enables
deployment across different backends, with its extension MNN-LLM specifically designed for LLM
deployment on mobile devices, PCs, and embedded systems. ExecuTorch [288] is an end-to-end
edge inference framework tailored for deploying PyTorch models on edge devices.

Security risks. Edge deployment also introduces heightened security risks, as models are
exposed in a white-box manner, making them more susceptible to physical tampering, adversarial
inputs, and model stealing [188]. However, processing sensitive user information locally reduces
the risk of data leakage compared to cloud-based deployment [188, 443], highlighting a trade-off
between security threats and privacy benefits.

7.2.2 Challenges. Edge deployment presents three primary challenges. Hardware Constraints.
Unlike centralized servers, edge devices have limited computational capabilities, necessitating
model compression before deployment. However, this process involves a trade-off between model
size and performance, as aggressive compression techniques can degrade accuracy and robustness.
Platform Heterogeneity. The diversity of operating systems and hardware architectures across
edge devices complicates deployment, requiring additional driver support and optimization for

, Vol. 1, No. 1, Article . Publication date: July 2025.

36 Hongzhou Rao, Yanjie Zhao, Xinyi Hou, Shenao Wang, and Haoyu Wang

compatibility. While certain open-source tools facilitate cross-platform deployment, most solutions
are tailored to specific LLM ecosystems or hardware platforms, limiting their general applicability.
Security Risks. Models deployed on edge devices are effectively exposed in a white-box manner,
making them vulnerable to threats such as model extraction and adversarial attacks. Ensuring
robust security mechanisms while maintaining efficient inference remains a challenge.

7.2.3 Road Ahead. Both hardware constraints and platform heterogeneity are deployment-
related challenges that can be addressed through SE solutions. A key direction for future research
is the development of generalized deployment frameworks, such as Llama.cpp and MNN,
which facilitate seamless LLM deployment across diverse edge devices. These frameworks should
not only support cross-platform compatibility but also integrate common model compression
and fine-tuning techniques, allowing users to optimize models according to specific deployment
requirements. Furthermore, to enhance their applicability, these tools should be extended beyond
the LLaMA family to support a broader range of models, such as the DeepSeek family and the
Gemma family, among others.

Regarding security risks in edge LLM deployment, existing research remains limited. Given the
heterogeneous and dynamic nature of edge computing environments, potential attack vectors are
diverse and complex. One promising approach is executing models within a TEE, which provides
hardware-based isolation for secure model inference. However, this method introduces additional
challenges, as it requires specialized hardware support and remains vulnerable to various security
threats [23], including side-channel attacks such as CipherFix attacks [375] and cache side-channel
attacks [473]. Therefore, future research on secure TEE-based LLM deployment should focus
on two key aspects: (a) ensuring compatibility across diverse hardware architectures to promote
widespread adoption, and (b) developing robust defense mechanisms against known vulnerabilities,
such as side-channel attacks [375, 473], to enhance the security and reliability of on-device LLMs.

7.3 Hybrid Deployment

7.3.1 Research Status. Hybrid deployment, such as edge-cloud collaborative computing, integrates
the advantages of both edge and cloud deployment, offering additional benefits. On one hand, it
enhances the flexibility of model deployment and task execution—computationally intensive tasks
can be offloaded to cloud clusters, whereas lightweight tasks can be processed on edge devices.
On the other hand, it broadens the application scenarios of LLMs, enabling cross-regional task
execution and real-time decision-making in latency-sensitive applications.

Device collaboration. Effective collaboration between cloud and edge devices requires dynamic
task partitioning and computation offloading while balancing inference latency, bandwidth con-
straints, and data privacy [121, 407, 443]. He et al. [121] proposed an active inference approach using
reinforcement learning for resource scheduling in cloud-edge LLM inference. CE-CoLLM [151], a
cloud-edge collaborative inference framework, employs early-exit mechanisms, a cloud context
manager, and quantization to reduce high communication overhead, achieving both low-latency
edge standalone inference and high-accuracy cloud-edge collaborative inference. Additionally, Hao
et al. [115] introduced a hybrid inference method that leverages small models on edge devices in
conjunction with large cloud-based models to enhance inference performance.

Data security. Hybrid deployment involves extensive data exchange, increasing the risk of data
leakage. Common privacy-preserving techniques include federated learning [32, 167], differential
privacy [27, 262, 313], and split learning [291]. Federated learning protects user data by enabling
local model training while updating a global model in the cloud. Differential privacy introduces noise
into data to obscure sensitive information, whereas split learning transmits only partial computation
results to the cloud, thereby minimizing data exposure. However, there still are privacy risks, as

, Vol. 1, No. 1, Article . Publication date: July 2025.

Software Engineering for Large Language Models: Research Status, Challenges and the Road Ahead 37

adversarial servers may attempt to reconstruct users’ original data [291]. Furthermore, as previously
discussed, attacks such as leveraging soft prompt to expose LLM training data could also manifest
in hybrid deployment settings. Ensuring data security in hybrid deployments remains an open
research challenge that requires further investigation.

7.3.2 Challenges. Hybrid deployment introduces additional challenges beyond those encountered
in cluster and edge deployment. Device collaboration. Unlike cluster deployment, hybrid deploy-
ment requires efficient coordination between edge devices and cloud servers. The heterogeneity of
edge devices, each with varying computational capabilities, further complicates scheduling, making
task offloading and resource allocation more challenging. Additionally, optimizing these processes
must account for inference latency, bandwidth constraints, and dynamic workload distribution,
increasing the complexity of system coordination. Data security. Compared to edge deployment,
hybrid deployment involves frequent data exchanges with cloud servers, heightening the risk of data
exposure. Unlike in cluster deployment, this risk is made worse by the diverse and less controlled
nature of edge environments. Moreover, since both cloud servers and edge devices participate in
computations, either party could act maliciously, making security threats more unpredictable and
the deployment environment more complex.

7.3.3 Road Ahead. To address the challenges associated with device collaboration, future re-
search can explore collaborative optimization schemes from three key perspectives: low-latency
communication, performance optimization, and intelligent scheduling. For low-latency communi-
cation, advancements in networking and data transmission technologies are crucial for accelerating
information exchange within collaborative networks and minimizing communication delays. From
a SE perspective, optimizing the inference process itself can significantly enhance communication
efficiency between cloud and edge devices. Future solutions could integrate techniques such as
vector database caching [421] and MoE architectures [152] to reduce latency and improve inference
performance. Regarding performance optimization, traditional LLM enhancement techniques
(e.g., RAG, MoE, and prompt engineering [152, 289]) can be leveraged to improve hybrid inference
efficiency. Additionally, novel strategies, such as constraint satisfaction mechanisms for complex
decision-making in edge-cloud collaboration [417] and the integration of quantization with effi-
cient local inference methods [296], may further enhance the computational capabilities of edge
devices. For intelligent scheduling, future research can focus on developing more adaptive task
and resource allocation strategies [417, 443]. These strategies should ensure system robustness
by dynamically adjusting to inference failures, resource constraints, and evolving workloads in
real-time.

To enhance data security, cryptographic methods such as HE, zero-knowledge proofs
(ZKP) [331], MPC [475], and blockchain-based security mechanisms [193, 363] present poten-
tial solutions. However, these cryptographic methods significantly increase the computational
overhead of LLM inference, which limits their applicability on edge devices with limited resources.
Alternative approaches such as federated learning [167, 425] and confidential computing [475]
have gained attention due to their compatibility with hybrid deployment environments, with dif-
ferential privacy playing a critical role in federated learning. Inspired by this, a promising direction
involves injecting noise into prompts while ensuring that LLMs can still correctly interpret the
intended information. Since prompts primarily consist of natural language, a prompt encoding-
decoding technique could be explored to transform prompts into structured representations for
noise injection, followed by decoding them back into natural language when needed. A related
approach is prompt obfuscation [199, 277], which can also protect sensitive information within
prompts from being extracted or exploited by adversarial entities. These techniques enhance prompt
security while preserving the effectiveness of LLM interactions.

, Vol. 1, No. 1, Article . Publication date: July 2025.

38 Hongzhou Rao, Yanjie Zhao, Xinyi Hou, Shenao Wang, and Haoyu Wang

8 MAINTENANCE AND EVOLUTION
8.1 Research Status

LLM maintenance and evolution encompass the ongoing operation, monitoring, and upgrading of
models post-deployment, ensuring stable inference, addressing emerging issues, and continuously
improving model performance. Unlike the development and enhancement phases, which primarily
focus on model training and fine-tuning, maintenance and evolution require long-term management
strategies to sustain the efficiency, reliability, and compliance of LLMs in real-world applications.
We list the challenges and potential future directions in Figure 9.

§ 8 Maintenance and Evolution

§ 8.2 Challeng § 8.3 Road Ahead
Technical Debt Societal Compliance and SystematicallyTechnical Robustness Against Drift
Performance Assurance Ethical Risks Debt Research Adaptive Ethical Compliance

Fig. 9. Challenges and Road Ahead in §8 Maintenance and Evolution.

The rapid advancement of LLMs often leads to the accumulation of technical debt, as ad-
hoc solutions (e.g., memory management, model compression, and attention optimization) are
implemented to address short-term challenges [245]. However, these solutions may hinder long-
term sustainability by increasing system complexity and maintenance overhead. In addition to
these architectural challenges, iterative model updates introduce versioning complexities, including
API compatibility issues and dependency conflicts, further increasing maintenance efforts. As Ma
et al. [234] highlighted, APIs may be no longer used during model development, making regression
testing to be a crucial concern. While tools such as MLflow Model Registry [1] and PEFT [75]
mitigate some of these challenges, critical gaps remain in quantifying technical debt and designing
unified lifecycle frameworks that balance incremental learning with catastrophic forgetting.

Ensuring consistent model performance in dynamic environments requires addressing model
drift, such as task [2], data [142], semantic [69, 299, 304], concept [412], and knowledge [79]
drift, which are common in multi-model collaboration. Existing techniques, such as drift detection
(e.g., the Kolmogorov-Smirnov test [104]) and model compression, offer partial solutions which
may need full model retraining, remaining computationally expensive, and semantic-level drift
is often detected with significant delays. Furthermore, The increasing complexity of multi-model
collaboration makes these drifts more severe. Maintaining model performance in such settings
requires not only early drift detection but also the development of robust adaptation mechanisms
to mitigate its effects. However, current solutions remain insufficient, either relying on costly
retraining or failing to address higher-level semantic and knowledge drift, which can cause subtle
yet significant deviations in model behavior over time.

Beyond technical considerations, LLMs must also comply with evolving legal frameworks (e.g.,
the EU AI Act [70]) and ethical standards, necessitating the development of automated compliance
mechanisms that integrate regulatory constraints into model behavior. However, automating compli-
ance remains a significant challenge. While post-hoc filters and bias assessment tools help mitigate
immediate risks [350, 397], they are insufficient for preventing long-term societal harms, such as the
reinforcement of biases from incremental data updates or cross-cultural misalignment [18, 48, 345].

Thus, maintaining and evolving LLMs need comprehensive solutions that integrate technical,
operational, and regulatory considerations. Future research must explore systematic strategies
for managing technical debt, improving drift adaptation mechanisms, and developing more proactive

, Vol. 1, No. 1, Article . Publication date: July 2025.

Software Engineering for Large Language Models: Research Status, Challenges and the Road Ahead 39

compliance frameworks to ensure that LLMs remain reliable, efficient, and aligned with ethical and
legal standards.

8.2 Challenges

The maintenance and evolution of LLMs present multifaceted challenges that extend beyond
traditional SE paradigms. These challenges can be categorized into three interconnected dimensions,
encompassing both technical and societal complexities: technical debt, performance assurance,
and societal compliance and ethical risks.

Technical debt. The rapid advancements in model compression, fine-tuning, and continual
learning have led to the accumulation of hidden technical debt. For instance, the increasing com-
plexity of model architectures reduces post-training interpretability, while continual learning may
exacerbate rather than mitigate biases [245]. These technical debts pose significant risks to model
improvement, inference reliability, and security. However, due to the lack of systematic studies in
this area, a comprehensive understanding of LLM technical debt remains elusive, making it hard to
develop effective mitigation strategies.

Performance assurance. Model drift has emerged as a critical challenge, often resulting in
unexpected inference errors, degraded performance, or even the generation of harmful content.
Given the dynamic nature of deployment environments and evolving user interactions, mitigating
model drift requires robust adaptation mechanisms. Yet, existing methods remain limited in their
ability to detect and counteract drift efficiently, particularly at the semantic level, where subtle but
significant changes in model behavior can occur over time.

Societal compliance and ethical risks. As LLMs are increasingly deployed in real-world
applications, ensuring their outputs align with ethical and social values is imperative. However,
current alignment efforts remain insufficient, as adversarial attacks can manipulate even aligned
models into producing undesirable outputs. Furthermore, the emergence of alignment faking [101]
raises concerns that models may exhibit alignment during evaluation but deviate in other scenarios,
casting doubt on the reliability of existing alignment techniques. Addressing ethical alignment in
LLMs thus remains an ongoing and pressing research challenge.

8.3 Road Ahead

As of the date of writing, research on model maintenance remains limited, particularly in the
context of technical debt. However, it addresses a critical issue that deserves greater attention.
For the technical debt of LLM, we suggest that the first step in future research should be to do
work like systematically technical debt research to assess its impact, and subsequently develop
effective mitigation strategies. Additionally, LLMOps [59] has emerged as a promising paradigm
for enabling automated lifecycle management and standardized control in LLM development,
effectively mitigating common technical debt issues. For instance, LLMOps facilitates real-time
model monitoring and continuous feedback mechanisms, allowing for the timely detection and
correction of model degradation or knowledge loss, thereby preventing the long-term accumulation
of quality debt. By leveraging automation, standardization, and optimization techniques, LLMOps
holds significant potential for addressing various technical debt challenges in industrial LLM
applications, making it a compelling research direction.

Similarly, robustness against drift necessitates systematic solutions to mitigate the effects
of drift in LLMs. Future research may explore the alignment of multi-modal and multi-model
representation spaces, prompt refinement, and techniques for preserving semantic integrity in
long and sequentially evolving contexts. Additionally, the development of an automated model
evolution framework or a performance monitoring system could provide continuous assessment of
LLM performance across tasks, both during regular operation and after knowledge updates. By

, Vol. 1, No. 1, Article . Publication date: July 2025.

40 Hongzhou Rao, Yanjie Zhao, Xinyi Hou, Shenao Wang, and Haoyu Wang

detecting model drift, these systems would allow early action to fix issues, ensuring reliability and
stability throughout the LLM development lifecycle, and preventing unexpected performance drops
while maintaining accuracy across different deployment scenarios.

Bias and ethical concerns in LLMs must not be overlooked, making adaptive ethical compli-
ance a crucial area of study. While numerous techniques have been proposed to address societal
compliance and ethical risks during LLM training, future research should focus on dynamically and
precisely adjusting ethical and bias-related concepts during model maintenance, which may involve
integrating knowledge unlearning and continual learning techniques while simultaneously address-
ing the challenge of alignment faking [101]. Furthermore, as regulatory and ethical constraints
on LLMs continue to evolve, translating legal frameworks and ethical norms into enforceable
model constraints will be essential for ensuring sustained compliance with regulatory changes
and societal expectations. Importantly, these adaptations must be achieved without introducing
excessive system complexity, thereby preserving the efficiency and scalability of LLM deployment
and operation.

9 RELATED WORK

With the rapid advancement of LLMs and their success across various applications, research on
LLMs has experienced explosive growth in recent years. To systematically summarize existing
achievements and outline future directions, a substantial number of survey studies have emerged.
Overall, the existing surveys can be categorized into two groups: those focusing on the fundamental
aspects of LLMs and those emphasizing the applications of LLMs in different domains.

On one hand, as LLMs include multiple dimensions such as model architecture, training method-
ologies, and security evaluation, many existing surveys focus on specific aspects of LLM research.
Zhao et al.[454] and Naveed et al.[256] primarily concentrate on the development trajectory of
LLMs, providing detailed reviews of key technological advancements and major research milestones.
Chang et al.[26], Xu et al.[392], and Guo et al.[110] focus specifically on evaluation techniques for
LLMs. In addition, as concerns over security risks grow with the increasing scale of models, Yao
et al.[420], Wang et al.[361], and Das et al.[51] provide systematic analyses of LLM security issues,
covering impact assessment, domain-specific vulnerabilities, and overarching security challenges,
respectively.

On the other hand, survey studies focusing on the application of LLMs have also been increasing.
In particular, the use of LLMs for SE has emerged as a highly active area of research in recent
years. Hou et al.[126] conducted one of the systematic studies in this field, followed by further
investigations by Fan et al.[78] and Liu et al. [210]. Beyond SE, several surveys have summarized the
applications of LLMs across various industries, such as telecommunications [461], medicine [340],
and education [157]. Additionally, research has explored LLMs in roles as human judges (LLM-
as-a-judge)[103, 177, 177], as well as in SE subfields such as code generation[147, 357] and code
repair [446], alongside comprehensive analyses of LLM applications [112, 154]. These studies
highlight the critical role of LLMs in today’s society and underscore their potential for future
development, emphasizing the continuing importance of advancing LLM technologies.

However, existing studies have not provided a systematic analysis of the LLM development
lifecycle from an SE perspective. To the best of our knowledge, we presents the first compre-
hensive survey in this work that examines the LLM development lifecycle through the lens of
SE. Our study systematically reviews the key SE challenges associated with LLM development and
proposes critical directions for future research, offering valuable insights to guide subsequent work
in this emerging area.

, Vol. 1, No. 1, Article . Publication date: July 2025.

Software Engineering for Large Language Models: Research Status, Challenges and the Road Ahead 41

10 CONCLUSION

This paper presents a comprehensive analysis of the challenges associated with LLMs from an SE
perspective. By systematically examining each phase of the LLM development lifecycle, we provide
an in-depth review of the current research landscape, identify key challenges, and present future
research directions. Our findings provide valuable insights to facilitate further advancements in
this field, contributing to the development of more efficient, robust, and scalable LLMs.

REFERENCES

[1] [n.d.]. MLflow Model Registry. https://mlflow.org/docs/latest/model-registry/. Accessed: 2025-04-09.

[2] Sahar Abdelnabi, Aideen Fay, Giovanni Cherubin, Ahmed Salem, Mario Fritz, and Andrew Paverd. 2024. Are you still

on track!? Catching LLM Task Drift with Activations. arXiv preprint arXiv:2406.00799 (2024).

Rishabh Agarwal, Nino Vieillard, Yongchao Zhou, Piotr Stanczyk, Sabela Ramos Garea, Matthieu Geist, and Olivier

Bachem. 2024. On-policy distillation of language models: Learning from self-generated mistakes. In The Twelfth

International Conference on Learning Representations.

[4] Agent Communication Protocol Project. 2025. Introduction to the Agent Communication Protocol. https://
agentcommunicationprotocol.dev/introduction/welcome Accessed: 2025-05-12.

[5] Agent Network Protocol Project. 2025. Agent Network Protocol (ANP) Official Website. https://agent-network-
protocol.com/ Accessed: 2025-05-12.

[6] Ahmed Agiza, Marina Neseem, and Sherief Reda. 2024. Mtlora: Low-rank adaptation approach for efficient multi-task
learning. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 16196-16205.

[7] Amey Agrawal, Nitin Kedia, Ashish Panwar, Jayashree Mohan, Nipun Kwatra, Bhargav Gulavani, Alexey Tumanov,
and Ramachandran Ramjee. 2024. Taming { Throughput-Latency} tradeoff in {LLM} inference with {Sarathi-Serve}.
In 18th USENIX Symposium on Operating Systems Design and Implementation (OSDI 24). 117-134.

[8] Khlood Ahmad, Mohamed Abdelrazek, Chetan Arora, Muneera Bano, and John Grundy. 2023. Requirements engi-
neering for artificial intelligence systems: A systematic mapping study. Information and Software Technology 158
(2023), 107176.

[9] Meta AL 2025. Llama: Open-Source Al Models. https://www.llama.com/.

[10] Daniel Alexander Alber, Zihao Yang, Anton Alyakin, Eunice Yang, Sumedha Rai, Aly A Valliani, Jeff Zhang, Gabriel R
Rosenbaum, Ashley K Amend-Thomas, David B Kurland, et al. 2025. Medical large language models are vulnerable to
data-poisoning attacks. Nature Medicine (2025), 1-9.

[11] Shaden Alshammari, Yu-Xiong Wang, Deva Ramanan, and Shu Kong. 2022. Long-tailed recognition via weight
balancing. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 6897-6907.

[12] Maryam Amirizaniani, Elias Martin, Maryna Sivachenko, Afra Mashhadi, and Chirag Shah. 2024. Can llms reason
like humans? assessing theory of mind reasoning in llms for open-ended questions. In Proceedings of the 33rd ACM
International Conference on Information and Knowledge Management. 34—44.

[13] Anthropic. 2025. Claude 3.7 Sonnet and Claude Code. https://www.anthropic.com/news/claude-3-7-sonnet Accessed:
2025-04-20.

[14] Anthropic. 2025. MCP: Agents and Tools Overview. https://docs.anthropic.com/en/docs/agents-and-tools/mcp
Accessed: 2025-04-26.

[15] Daiyaan Arfeen, Zhen Zhang, Xinwei Fu, Gregory R Ganger, and Yida Wang. 2024. PipeFill: Using GPUs During
Bubbles in Pipeline-parallel LLM Training. arXiv preprint arXiv:2410.07192 (2024).

[16] Guangji Bai, Zheng Chai, Chen Ling, Shiyu Wang, Jiaying Lu, Nan Zhang, Tingwei Shi, Ziyang Yu, Mengdan Zhu,
Yifei Zhang, et al. 2024. Beyond efficiency: A systematic survey of resource-efficient large language models. arXiv
preprint arXiv:2401.00625 (2024).

[17] Nathalie Baracaldo, Bryant Chen, Heiko Ludwig, and Jachoon Amir Safavi. 2017. Mitigating poisoning attacks on
machine learning models: A data provenance based approach. In Proceedings of the 10th ACM workshop on artificial
intelligence and security. 103-110.

[3

=

[18] Peter J Barclay and Ashkan Sami. 2024. Investigating Markers and Drivers of Gender Bias in Machine Translations.
arXiv preprint arXiv:2403.11896 (2024).

[19] Yan Cai, Linlin Wang, Ye Wang, Gerard de Melo, Ya Zhang, Yanfeng Wang, and Liang He. 2024. Medbench: A
large-scale chinese benchmark for evaluating medical large language models. In Proceedings of the AAAI Conference
on Artificial Intelligence, Vol. 38. 17709-17717.

[20] Jialun Cao, Zhiyong Chen, Jiarong Wu, Shing-Chi Cheung, and Chang Xu. 2024. JavaBench: A Benchmark of Object-
Oriented Code Generation for Evaluating Large Language Models. In Proceedings of the 39th IEEE/ACM International
Conference on Automated Software Engineering. 870-882.

, Vol. 1, No. 1, Article . Publication date: July 2025.

https://mlflow.org/docs/latest/model-registry/
https://agentcommunicationprotocol.dev/introduction/welcome
https://agentcommunicationprotocol.dev/introduction/welcome
https://agent-network-protocol.com/
https://agent-network-protocol.com/
https://www.llama.com/
https://www.anthropic.com/news/claude-3-7-sonnet
https://docs.anthropic.com/en/docs/agents-and-tools/mcp

42 Hongzhou Rao, Yanjie Zhao, Xinyi Hou, Shenao Wang, and Haoyu Wang

[21] Jialun Cao, Wugi Zhang, and Shing-Chi Cheung. 2024. Concerned with Data Contamination? Assessing Countermea-
sures in Code Language Model. arXiv preprint arXiv:2403.16898 (2024).

[22] Federico Cassano, John Gouwar, Daniel Nguyen, Sydney Nguyen, Luna Phipps-Costin, Donald Pinckney, Ming-Ho
Yee, Yangtian Zi, Carolyn Jane Anderson, Molly Q Feldman, et al. 2022. Multipl-e: A scalable and extensible approach
to benchmarking neural code generation. arXiv preprint arXiv:2208.08227 (2022).

[23] David Cerdeira, Nuno Santos, Pedro Fonseca, and Sandro Pinto. 2020. Sok: Understanding the prevailing security
vulnerabilities in trustzone-assisted tee systems. In 2020 IEEE Symposium on Security and Privacy (SP). IEEE, 1416-1432.

[24] Tuhin Chakrabarty, Philippe Laban, Divyansh Agarwal, Smaranda Muresan, and Chien-Sheng Wu. 2024. Art or
artifice? large language models and the false promise of creativity. In Proceedings of the CHI Conference on Human
Factors in Computing Systems. 1-34.

[25] Aofei Chang, Jiaqi Wang, Han Liu, Parminder Bhatia, Cao Xiao, Ting Wang, and Fenglong Ma. 2024. BIPEFT:
Budget-Guided Iterative Search for Parameter Efficient Fine-Tuning of Large Pretrained Language Models. arXiv
preprint arXiv:2410.09079 (2024).

[26] Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan Yi, Cunxiang Wang,
Yidong Wang, et al. 2024. A survey on evaluation of large language models. ACM Transactions on Intelligent Systems
and Technology 15, 3 (2024), 1-45.

[27] Zachary Charles, Arun Ganesh, Ryan McKenna, H Brendan McMahan, Nicole Mitchell, Krishna Pillutla, and Keith

Rush. 2024. Fine-tuning large language models with user-level differential privacy. arXiv preprint arXiv:2407.07737

(2024).

Harrison Chase and contributors. 2022. LangChain: Build context-aware reasoning applications. https://github.com/

langchain-ai/langchain.

[29] Arnav Chavan, Raghav Magazine, Shubham Kushwaha, Mérouane Debbah, and Deepak Gupta. 2024. Faster and
Lighter LLMs: A Survey on Current Challenges and Way Forward. arXiv preprint arXiv:2402.01799 (2024).

[30] Jerry Chee, Yaohui Cai, Volodymyr Kuleshov, and Christopher M De Sa. 2024. Quip: 2-bit quantization of large

language models with guarantees. Advances in Neural Information Processing Systems 36 (2024).

Viktoriia Chekalina, Anna Rudenko, Gleb Mezentsev, Alexander Mikhalev, Alexander Panchenko, and Ivan Oseledets.

2024. SparseGrad: A Selective Method for Efficient Fine-tuning of MLP Layers. arXiv preprint arXiv:2410.07383 (2024).

[32] Chaochao Chen, Xiaohua Feng, Jun Zhou, Jianwei Yin, and Xiaolin Zheng. 2023. Federated large language model: A
position paper. arXiv e-prints (2023), arXiv-2307.

[33] Dake Chen, Hanbin Wang, Yunhao Huo, Yuzhao Li, and Haoyang Zhang. 2023. Gamegpt: Multi-agent collaborative
framework for game development. arXiv preprint arXiv:2310.08067 (2023).

[34] Jieneng Chen, Luoxin Ye, Ju He, Zhaoyang Wang, Daniel Khashabi, and Alan L Yuille. 2025. Efficient large multi-modal
models via visual context compression. Advances in Neural Information Processing Systems 37 (2025), 73986—74007.

[35] Lin Chen, Jinsong Li, Xiaoyi Dong, Pan Zhang, Conghui He, Jiaqi Wang, Feng Zhao, and Dahua Lin. 2025. Sharegpt4v:
Improving large multi-modal models with better captions. In European Conference on Computer Vision. Springer,
370-387.

[36] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared Kaplan, Harri Edwards,

Yuri Burda, Nicholas Joseph, Greg Brockman, et al. 2021. Evaluating large language models trained on code. arXiv

preprint arXiv:2107.03374 (2021).

Zixiang Chen, Yihe Deng, Huizhuo Yuan, Kaixuan Ji, and Quanquan Gu. 2024. Self-Play Fine-Tuning Converts Weak

Language Models to Strong Language Models. arXiv:2401.01335 [cs.LG] https://arxiv.org/abs/2401.01335

[38] Zitao Chen and Karthik Pattabiraman. 2024. Catch Me if You Can: Detecting Unauthorized Data Use in Deep Learning

Models. arXiv preprint arXiv:2409.06280 (2024).

Yuheng Cheng, Ceyao Zhang, Zhengwen Zhang, Xiangrui Meng, Sirui Hong, Wenhao Li, Zihao Wang, Zekai Wang,

Feng Yin, Junhua Zhao, et al. 2024. Exploring large language model based intelligent agents: Definitions, methods,

and prospects. arXiv preprint arXiv:2401.03428 (2024).

[40] Wonje Choi, Woo Kyung Kim, Minjong Yoo, and Honguk Woo. 2024. Embodied CoT Distillation From LLM To

Off-the-shelf Agents. arXiv:2412.11499 [cs.AI] https://arxiv.org/abs/2412.11499

Zhumin Chu, Qingyao Ai, Yiteng Tu, Haitao Li, and Yiqun Liu. 2024. Automatic Large Language Model Evaluation

via Peer Review. In Proceedings of the 33rd ACM International Conference on Information and Knowledge Management.

384-393.

[42] John Joon Young Chung, Ece Kamar, and Saleema Amershi. 2023. Increasing diversity while maintaining accuracy:

Text data generation with large language models and human interventions. arXiv preprint arXiv:2306.04140 (2023).

Woojin Chung, Jiwoo Hong, Na Min An, James Thorne, and Se-Young Yun. 2024. Stable Language Model Pre-training

by Reducing Embedding Variability. arXiv preprint arXiv:2409.07787 (2024).

[44] Comlfy. 2025. ComfyUL https://www.comfy.org/zh-cn/. Accessed: 2025-05-15.

[28

[

[31

—

(37

—

(39

—

[41

—

(43

-

, Vol. 1, No. 1, Article . Publication date: July 2025.

https://github.com/langchain-ai/langchain
https://github.com/langchain-ai/langchain
https://arxiv.org/abs/2401.01335
https://arxiv.org/abs/2401.01335
https://arxiv.org/abs/2412.11499
https://arxiv.org/abs/2412.11499
https://www.comfy.org/zh-cn/

Software Engineering for Large Language Models: Research Status, Challenges and the Road Ahead 43

[45] Mike Conover, Matt Hayes, Ankit Mathur, Jianwei Xie, Jun Wan, Sam Shah, Ali Ghodsi, Patrick Wendell, Matei
Zaharia, and Reynold Xin. 2023. Free dolly: Introducing the world’s first truly open instruction-tuned llm. Company
Blog of Databricks (2023).

[46] Domenico Cotroneo, Cristina Improta, Pietro Liguori, and Roberto Natella. 2024. Vulnerabilities in ai code generators:

Exploring targeted data poisoning attacks. In Proceedings of the 32nd IEEE/ACM International Conference on Program

Comprehension. 280-292.

Yingqian Cui, Jie Ren, Yuping Lin, Han Xu, Pengfei He, Yue Xing, Lingjuan Lyu, Wenqi Fan, Hui Liu, and Jiliang Tang.

2025. Ft-shield: A watermark against unauthorized fine-tuning in text-to-image diffusion models. ACM SIGKDD

Explorations Newsletter 26, 2 (2025), 76-88.

[48] Sunhao Dai, Chen Xu, Shicheng Xu, Liang Pang, Zhenhua Dong, and Jun Xu. 2024. Bias and unfairness in information
retrieval systems: New challenges in the llm era. In Proceedings of the 30th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining. 6437-6447.

[49] Xiangxiang Dai, Jin Li, Xutong Liu, Angi Yu, and John Lui. 2024. Cost-Effective Online Multi-LLM Selection with
Versatile Reward Models. arXiv preprint arXiv:2405.16587 (2024).

[50] Arghavan Moradi Dakhel, Amin Nikanjam, Vahid Majdinasab, Foutse Khomh, and Michel C Desmarais. 2024. Effective
test generation using pre-trained large language models and mutation testing. Information and Software Technology
171 (2024), 107468.

[51] Badhan Chandra Das, M Hadi Amini, and Yanzhao Wu. 2025. Security and privacy challenges of large language
models: A survey. Comput. Surveys 57, 6 (2025), 1-39.

[52] Sarkar Snigdha Sarathi Das, Ranran Haoran Zhang, Peng Shi, Wenpeng Yin, and Rui Zhang. 2023. Unified Low-
Resource Sequence Labeling by Sample-Aware Dynamic Sparse Finetuning. In Conference on Empirical Methods in
Natural Language Processing. https://api.semanticscholar.org/CorpusID:265043702

[53] Bibhu Dash. 2024. Zero-Trust Architecture (ZTA): Designing an Al-Powered Cloud Security Framework for LLMs’
Black Box Problems. Available at SSRN 4726625 (2024).

[54] Daniel DeAlcala, Aythami Morales, Julian Fierrez, Gonzalo Mancera, Ruben Tolosana, and Javier Ortega-Garcia.
2024. Is my data in your ai model? membership inference test with application to face images. arXiv preprint
arXiv:2402.09225 (2024).

[55] Edoardo Debenedetti, Jie Zhang, Mislav Balunovic, Luca Beurer-Kellner, Marc Fischer, and Florian Trameér. 2025.
Agentdojo: A dynamic environment to evaluate prompt injection attacks and defenses for LLM agents. Advances in
Neural Information Processing Systems 37 (2025), 82895-82920.

[56] Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. 2022. Gpt3. int8 (): 8-bit matrix multiplication for
transformers at scale. Advances in Neural Information Processing Systems 35 (2022), 30318-30332.

[57] Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. 2024. Qlora: Efficient finetuning of quantized
llms. Advances in Neural Information Processing Systems 36 (2024).

[58] Nobel Dhar, Bobin Deng, Dan Lo, Xiaofeng Wu, Liang Zhao, and Kun Suo. 2024. An empirical analysis and resource
footprint study of deploying large language models on edge devices. In Proceedings of the 2024 ACM Southeast
Conference. 69-76.

[59] JosuDiaz-De-Arcaya, Juan Lopez-De-Armentia, Raul Minon, Iker Lasa Ojanguren, and Ana I Torre-Bastida. 2024. Large
Language Model Operations (LLMOps): Definition, Challenges, and Lifecycle Management. In 2024 9th International
Conference on Smart and Sustainable Technologies (SpliTech). IEEE, 1-4.

[60] Bosheng Ding, Chengwei Qin, Ruochen Zhao, Tianze Luo, Xinze Li, Guizhen Chen, Wenhan Xia, Junjie Hu, Luu Anh
Tuan, and Shafiq Joty. 2024. Data augmentation using llms: Data perspectives, learning paradigms and challenges. In
Findings of the Association for Computational Linguistics ACL 2024. 1679-1705.

[61] Yangruibo Ding, Zijian Wang, Wasi Ahmad, Hantian Ding, Ming Tan, Nihal Jain, Murali Krishna Ramanathan, Ramesh
Nallapati, Parminder Bhatia, Dan Roth, et al. 2023. Crosscodeeval: A diverse and multilingual benchmark for cross-file
code completion. Advances in Neural Information Processing Systems 36 (2023), 46701-46723.

[62] Yangruibo Ding, Zijian Wang, Wasi Ahmad, Hantian Ding, Ming Tan, Nihal Jain, Murali Krishna Ramanathan, Ramesh
Nallapati, Parminder Bhatia, Dan Roth, et al. 2024. Crosscodeeval: A diverse and multilingual benchmark for cross-file
code completion. Advances in Neural Information Processing Systems 36 (2024).

[63] Ming Dong, Kang Xue, Bolong Zheng, and Tingting He. 2024. Data-oriented Dynamic Fine-tuning Parameter Selection
Strategy for FISH Mask based Efficient Fine-tuning. arXiv preprint arXiv:2403.08484 (2024).

[64] Shihan Dou, Enyu Zhou, Yan Liu, Songyang Gao, Wei Shen, Limao Xiong, Yuhao Zhou, Xiao Wang, Zhiheng Xi,

Xiaoran Fan, et al. 2024. LoORAMOoE: Alleviating world knowledge forgetting in large language models via MoE-style

plugin. In Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long

Papers). 1932-1945.

Wenyu Du, Tongxu Luo, Zihan Qiu, Zeyu Huang, Yikang Shen, Reynold Cheng, Yike Guo, and Jie Fu. 2025. Stacking

your transformers: A closer look at model growth for efficient llm pre-training. Advances in Neural Information

(47

—

(65

=

, Vol. 1, No. 1, Article . Publication date: July 2025.

https://api.semanticscholar.org/CorpusID:265043702

44 Hongzhou Rao, Yanjie Zhao, Xinyi Hou, Shenao Wang, and Haoyu Wang

Processing Systems 37 (2025), 10491-10540.

[66] Xueying Du, Mingwei Liu, Kaixin Wang, Hanlin Wang, Junwei Liu, Yixuan Chen, Jiayi Feng, Chaofeng Sha, Xin Peng,
and Yiling Lou. 2023. Classeval: A manually-crafted benchmark for evaluating llms on class-level code generation.
arXiv preprint arXiv:2308.01861 (2023).

[67] Jiangfei Duan, Shuo Zhang, Zerui Wang, Lijuan Jiang, Wenwen Qu, Qinghao Hu, Guoteng Wang, Qizhen Weng, Hang
Yan, Xingcheng Zhang, et al. 2024. Efficient training of large language models on distributed infrastructures: a survey.
arXiv preprint arXiv:2407.20018 (2024).

[68] Yucong Duan. 2024. The Large Language Model (LLM) Bias Evaluation (Age Bias). DIK WP Research Group International

Standard Evaluation. DOI 10 (2024).

Kristina Dzeparoska, Ali Tizghadam, and Alberto Leon-Garcia. 2024. Intent Assurance using LLMs guided by Intent

Drift. arXiv preprint arXiv:2402.00715 (2024).

[70] Lilian Edwards. 2021. The EU AI Act: a summary of its significance and scope. Artificial Intelligence (the EU AI Act) 1
(2021).

[71] Abul Ehtesham, Aditi Singh, Gaurav Kumar Gupta, and Saket Kumar. 2025. A survey of agent interoperability

protocols: Model Context Protocol (MCP), Agent Communication Protocol (ACP), Agent-to-Agent Protocol (A2A),

and Agent Network Protocol (ANP). arXiv preprint arXiv:2505.02279 (2025).

EleutherAl 2021. Im-evaluation-harness: A framework for evaluating language models on a wide range of tasks.

https://github.com/EleutherAl/lm-evaluation-harness.

[73] Jonathan Evertz, Merlin Chlosta, Lea Schonherr, and Thorsten Eisenhofer. 2024. Whispers in the Machine: Confiden-
tiality in LLM-integrated Systems. arXiv preprint arXiv:2402.06922 (2024).

[74] Hugging Face. 2023. Open LLM Leaderboard: Track, rank, and evaluate open LLMs and chatbots. https://huggingface.

co/spaces/open-llm-leaderboard/open_llm_leaderboard.

Hugging Face. 2023. PEFT: Parameter-Efficient Fine-Tuning. https://github.com/huggingface/peft.

Hugging Face. 2025. Hugging Face Datasets: A Community Library for Datasets. https://huggingface.co/datasets.

Hugging Face. 2025. Inference Endpoints: Machine Learning At Your Service. https://endpoints.huggingface.co/.

Angela Fan, Beliz Gokkaya, Mark Harman, Mitya Lyubarskiy, Shubho Sengupta, Shin Yoo, and Jie M Zhang. 2023. Large

language models for software engineering: Survey and open problems. In 2023 IEEE/ACM International Conference on

Software Engineering: Future of Software Engineering (ICSE-FoSE). IEEE, 31-53.

[79] Alina Fastowski and Gjergji Kasneci. 2024. Understanding Knowledge Drift in LLMs through Misinformation. arXiv
preprint arXiv:2409.07085 (2024).

[80] Muhammad Fawi. 2024. Curlora: Stable llm continual fine-tuning and catastrophic forgetting mitigation. arXiv
preprint arXiv:2408.14572 (2024).

[81] Jia Feng, Jiachen Liu, Cuiyun Gao, Chun Yong Chong, Chaozheng Wang, Shan Gao, and Xin Xia. 2024. Complex-
codeeval: A benchmark for evaluating large code models on more complex code. In Proceedings of the 39th IEEE/ACM
International Conference on Automated Software Engineering. 1895-1906.

[82] Shangbin Feng, Wenxuan Ding, Alisa Liu, Zifeng Wang, Weijia Shi, Yike Wang, Zejiang Shen, Xiaochuang Han,
Hunter Lang, Chen-Yu Lee, et al. 2025. When One LLM Drools, Multi-LLM Collaboration Rules. arXiv preprint
arXivi2502.04506 (2025).

[83] Shangbin Feng, Weijia Shi, Yike Wang, Wenxuan Ding, Vidhisha Balachandran, and Yulia Tsvetkov. 2024. Don’t
Hallucinate, Abstain: Identifying LLM Knowledge Gaps via Multi-LLM Collaboration. arXiv preprint arXiv:2402.00367
(2024).

[84] Shangbin Feng, Taylor Sorensen, Yuhan Liu, Jillian Fisher, Chan Young Park, Yejin Choi, and Yulia Tsvetkov. 2024.
Modular pluralism: Pluralistic alignment via multi-llm collaboration. arXiv preprint arXiv:2406.15951 (2024).

[85] Tao Feng, Lizhen Qu, Niket Tandon, Zhuang Li, Xiaoxi Kang, and Gholamreza Haffari. 2024. From pre-training
corpora to large language models: What factors influence llm performance in causal discovery tasks? arXiv preprint
arXiv:2407.19638 (2024).

[86] Maximilian T Fischer, Yannick Metz, Lucas Joos, Matthias Miller, and Daniel A Keim. 2024. MULTI-CASE: A
Transformer-based Ethics-aware Multimodal Investigative Intelligence Framework. arXiv preprint arXiv:2401.01955
(2024).

[87] Giorgio Franceschelli and Mirco Musolesi. 2024. On the creativity of large language models. AI & SOCIETY (2024),
1-11.

[88] Tingchen Fu, Mrinank Sharma, Philip Torr, Shay B Cohen, David Krueger, and Fazl Barez. 2024. PoisonBench:
Assessing Large Language Model Vulnerability to Data Poisoning. arXiv preprint arXiv:2410.08811 (2024).

[89] Yao Fu, Leyang Xue, Yeqi Huang, Andrei-Octavian Brabete, Dmitrii Ustiugov, Yuvraj Patel, and Luo Mai. 2024.
Serverlessllm: Low-latency serverless inference for large language models. In 18th USENIX Symposium on Operating
Systems Design and Implementation. USENIX Association, 135-153.

(69

—

(72

—

, Vol. 1, No. 1, Article . Publication date: July 2025.

https://github.com/EleutherAI/lm-evaluation-harness
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard
https://github.com/huggingface/peft
https://huggingface.co/datasets
https://endpoints.huggingface.co/

Software Engineering for Large Language Models: Research Status, Challenges and the Road Ahead 45

[90]

[91

—

[92

—

(93]

[94

flan)

[95

=

[96]

[97]

(98]

[99]
[100

=

[101]

[102]

[103]
[104]
[105]

[106]

[107]

[108]

[109]
[110]
[111]

[112]

Gad Gad, Aya Farrag, Ahmed Aboulfotouh, Khaled Bedda, Zubair Md Fadlullah, and Mostafa M Fouda. 2024. Joint
self-organizing maps and knowledge-distillation-based communication-efficient federated learning for resource-
constrained UAV-IoT systems. IEEE Internet of Things Journal 11, 9 (2024), 15504-15522.

Gad Gad, Eyad Gad, Zubair Md Fadlullah, Mostafa M Fouda, and Nei Kato. 2024. Communication-efficient and privacy-
preserving federated learning via joint knowledge distillation and differential privacy in bandwidth-constrained
networks. IEEE Transactions on Vehicular Technology (2024).

Kanishk Gandhi, Jan-Philipp Franken, Tobias Gerstenberg, and Noah Goodman. 2024. Understanding social reasoning
in language models with language models. Advances in Neural Information Processing Systems 36 (2024).

Chujie Gao, Dongping Chen, Qihui Zhang, Yue Huang, Yao Wan, and Lichao Sun. 2024. Llm-as-a-coauthor: The
challenges of detecting llm-human mixcase. arXiv preprint arXiv:2401.05952 (2024).

Shuzheng Gao, Wenxin Mao, Cuiyun Gao, Li Li, Xing Hu, Xin Xia, and Michael R Lyu. 2024. Learning in the wild:
Towards leveraging unlabeled data for effectively tuning pre-trained code models. In Proceedings of the IEEE/ACM
46th International Conference on Software Engineering. 1-13.

Senay A Gebreab, Khaled Salah, Raja Jayaraman, Muhammad Habib ur Rehman, and Samer Ellaham. 2024. LLM-Based
Framework for Administrative Task Automation in Healthcare. In 2024 12th International Symposium on Digital
Forensics and Security (ISDFS). IEEE, 1-7.

Georgi Gerganov and contributors. 2023. llama.cpp: Inference of LLaMA models in pure C/C++. https://github.com/
ggml-org/llama.cpp.

Linyuan Gong, Sida Wang, Mostafa Elhoushi, and Alvin Cheung. 2024. Evaluation of llms on syntax-aware code
fill-in-the-middle tasks. arXiv preprint arXiv:2403.04814 (2024).

Zhuocheng Gong, Jiahao Liu, Jingang Wang, Xunliang Cai, Dongyan Zhao, and Rui Yan. 2024. What makes quantiza-
tion for large language model hard? an empirical study from the lens of perturbation. In Proceedings of the AAAI
Conference on Artificial Intelligence, Vol. 38. 18082-18089.

Google. 2025. Gemini: Your Personal Al Assistant. https://gemini.google.com/.

Sagar Goyal, Eti Rastogi, Sree Prasanna Rajagopal, Dong Yuan, Fen Zhao, Jai Chintagunta, Gautam Naik, and Jeff
Ward. 2024. Healai: A healthcare llm for effective medical documentation. In Proceedings of the 17th ACM International
Conference on Web Search and Data Mining. 1167-1168.

Ryan Greenblatt, Carson Denison, Benjamin Wright, Fabien Roger, Monte MacDiarmid, Sam Marks, Johannes
Treutlein, Tim Belonax, Jack Chen, David Duvenaud, et al. 2024. Alignment faking in large language models. arXiv
preprint arXiv:2412.14093 (2024).

Kai Greshake, Sahar Abdelnabi, Shailesh Mishra, Christoph Endres, Thorsten Holz, and Mario Fritz. 2023. Not
what you’ve signed up for: Compromising real-world llm-integrated applications with indirect prompt injection. In
Proceedings of the 16th ACM Workshop on Artificial Intelligence and Security. 79-90.

Jiawei Gu, Xuhui Jiang, Zhichao Shi, Hexiang Tan, Xuehao Zhai, Chengjin Xu, Wei Li, Yinghan Shen, Shengjie Ma,
Honghao Liu, et al. 2024. A survey on llm-as-a-judge. arXiv preprint arXiv:2411.15594 (2024).

Jia Gu, Liang Pang, Huawei Shen, and Xueqi Cheng. 2024. Do LLMs Play Dice? Exploring Probability Distribution
Sampling in Large Language Models for Behavioral Simulation. arXiv preprint arXiv:2404.09043 (2024).

Sylvain Gugger, Thomas Wolf, Lysandre Debut, and contributors. 2020. Transformers: State-of-the-art Natural
Language Processing. https://github.com/huggingface/transformers.

Neel Guha, Julian Nyarko, Daniel Ho, Christopher Ré, Adam Chilton, Alex Chohlas-Wood, Austin Peters, Brandon
Waldon, Daniel Rockmore, Diego Zambrano, et al. 2024. Legalbench: A collaboratively built benchmark for measuring
legal reasoning in large language models. Advances in Neural Information Processing Systems 36 (2024).

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen, Xiao Bi, Yu Wu, YK Li,
et al. 2024. DeepSeek-Coder: When the Large Language Model Meets Programming-The Rise of Code Intelligence.
arXiv preprint arXiv:2401.14196 (2024).

Junfeng Guo, Yiming Li, Ruibo Chen, Yihan Wu, Heng Huang, et al. 2025. ZeroMark: Towards Dataset Ownership
Verification without Disclosing Watermark. Advances in Neural Information Processing Systems 37 (2025), 120468—
120500.

Yiduo Guo, Jie Fu, Huishuai Zhang, Dongyan Zhao, and Yikang Shen. 2024. Efficient continual pre-training by
mitigating the stability gap. arXiv preprint arXiv:2406.14833 (2024).

Zishan Guo, Renren Jin, Chuang Liu, Yufei Huang, Dan Shi, Linhao Yu, Yan Liu, Jiaxuan Li, Bojian Xiong, Deyi Xiong,
et al. 2023. Evaluating large language models: A comprehensive survey. arXiv preprint arXiv:2310.19736 (2023).
Akshat Gupta, Anurag Rao, and Gopala Anumanchipalli. 2024. Model editing at scale leads to gradual and catastrophic
forgetting. arXiv preprint arXiv:2401.07453 (2024).

Muhammad Usman Hadi, Rizwan Qureshi, Abbas Shah, Muhammad Irfan, Anas Zafar, Muhammad Bilal Shaikh,
Naveed Akhtar, Jia Wu, Seyedali Mirjalili, et al. 2023. A survey on large language models: Applications, challenges,
limitations, and practical usage. Authorea Preprints 3 (2023).

, Vol. 1, No. 1, Article . Publication date: July 2025.

https://github.com/ggml-org/llama.cpp
https://github.com/ggml-org/llama.cpp
https://gemini.google.com/
https://github.com/huggingface/transformers

46 Hongzhou Rao, Yanjie Zhao, Xinyi Hou, Shenao Wang, and Haoyu Wang

[113] Songyue Han, Mingyu Wang, Jialong Zhang, Dongdong Li, and Junhong Duan. 2024. A Review of Large Lan-
guage Models: Fundamental Architectures, Key Technological Evolutions, Interdisciplinary Technologies Integration,
Optimization and Compression Techniques, Applications, and Challenges. Electronics 13, 24 (2024), 5040.

[114] Zeyu Han, Chao Gao, Jinyang Liu, Jeff Zhang, and Sai Qian Zhang. 2024. Parameter-efficient fine-tuning for large
models: A comprehensive survey. arXiv preprint arXiv:2403.14608 (2024).

[115] Zixu Hao, Huiqiang Jiang, Shigi Jiang, Ju Ren, and Ting Cao. 2024. Hybrid slm and llm for edge-cloud collaborative
inference. In Proceedings of the Workshop on Edge and Mobile Foundation Models. 36—41.

[116] Helia Hashemi, Jason Eisner, Corby Rosset, Benjamin Van Durme, and Chris Kedzie. 2024. LLM-rubric: A multidi-

mensional, calibrated approach to automated evaluation of natural language texts. arXiv preprint arXiv:2501.00274

(2024).

Shabnam Hassani, Mehrdad Sabetzadeh, and Daniel Amyot. 2025. An empirical study on LLM-based classification of

requirements-related provisions in food-safety regulations. Empirical Software Engineering 30, 3 (2025), 72.

[118] Soufiane Hayou, Nikhil Ghosh, and Bin Yu. 2024. Lora+: Efficient low rank adaptation of large models. arXiv preprint

arXiv:2402.12354 (2024).

Chaoyang He, Shen Li, Mahdi Soltanolkotabi, and Salman Avestimehr. 2021. PipeTransformer: Automated elastic

pipelining for distributed training of large-scale models. In International Conference on Machine Learning. PMLR,

4150-4159.

[120] Jiaao He and Jidong Zhai. 2024. FastDecode: High-Throughput GPU-Efficient LLM Serving using Heterogeneous

Pipelines. arXiv preprint arXiv:2403.11421 (2024).

Ying He, Jingcheng Fang, F Richard Yu, and Victor C Leung. 2024. Large language models (LLMs) inference offloading

and resource allocation in cloud-edge computing: An active inference approach. IEEE Transactions on Mobile Computing

(2024).

Tharindu B Hewage, Shashikant Ilager, Maria Rodriguez Read, and Rajkumar Buyya. 2025. Aging-aware CPU Core

Management for Embodied Carbon Amortization in Cloud LLM Inference. arXiv preprint arXiv:2501.15829 (2025).

[123] Soka Hisaharo, Yuki Nishimura, and Aoi Takahashi. 2024. Optimizing llm inference clusters for enhanced performance

and energy efficiency. Authorea Preprints (2024).

Guiyang Hou, Yongliang Shen, and Weiming Lu. 2024. Progressive Tuning: Towards Generic Sentiment Abilities for

Large Language Models. In Findings of the Association for Computational Linguistics ACL 2024. 14392-14402.

[125] Xinyi Hou, Jiahao Han, Yanjie Zhao, and Haoyu Wang. 2025. Unveiling the Landscape of LLM Deployment in the
Wild: An Empirical Study. arXiv preprint arXiv:2505.02502 (2025).

[126] Xinyi Hou, Yanjie Zhao, Yue Liu, Zhou Yang, Kailong Wang, Li Li, Xiapu Luo, David Lo, John Grundy, and Haoyu
Wang. 2024. Large language models for software engineering: A systematic literature review. ACM Transactions on
Software Engineering and Methodology 33, 8 (2024), 1-79.

[127] Xinyi Hou, Yanjie Zhao, Shenao Wang, and Haoyu Wang. 2025. Model Context Protocol (MCP): Landscape, Security
Threats, and Future Research Directions. arXiv preprint arXiv:2503.23278 (2025).

[128] Chia-Yi Hsu, Yu-Lin Tsai, Chih-Hsun Lin, Pin-Yu Chen, Chia-Mu Yu, and Chun-Ying Huang. 2024. Safe LoRA: the
Silver Lining of Reducing Safety Risks when Fine-tuning Large Language Models. arXiv preprint arXiv:2405.16833
(2024).

[129] Qitian Jason Hu, Jacob Bieker, Xiuyu Li, Nan Jiang, Benjamin Keigwin, Gaurav Ranganath, Kurt Keutzer, and

Shriyash Kaustubh Upadhyay. 2024. MARS: A Benchmark for Multi-LLM Algorithmic Routing System. In ICLR 2024

Workshop: How Far Are We From AGL

Zhiqiang Hu, Lei Wang, Yihuai Lan, Wanyu Xu, Ee-Peng Lim, Lidong Bing, Xing Xu, Soujanya Poria, and Roy Ka-Wei

Lee. 2023. Llm-adapters: An adapter family for parameter-efficient fine-tuning of large language models. arXiv

preprint arXiv:2304.01933 (2023).

[131] Chun-Yin Huang, Kartik Srinivas, Xin Zhang, and Xiaoxiao Li. 2024. Overcoming data and model heterogeneities in
decentralized federated learning via synthetic anchors. arXiv preprint arXiv:2405.11525 (2024).

[132] Dong Huang, Guangtao Zeng, Jianbo Dai, Meng Luo, Han Weng, Yuhao Qing, Heming Cui, Zhijiang Guo, and Jie M
Zhang. 2024. Effi-Code: Unleashing Code Efficiency in Language Models. arXiv preprint arXiv:2410.10209 (2024).

[133] Dong Huang, Jie M Zhang, Michael Luck, Qingwen Bu, Yuhao Qing, and Heming Cui. 2023. Agentcoder: Multi-agent-
based code generation with iterative testing and optimisation. arXiv preprint arXiv:2312.13010 (2023).

[134] Jianheng Huang, Leyang Cui, Ante Wang, Chengyi Yang, Xinting Liao, Linfeng Song, Junfeng Yao, and Jinsong Su.
2024. Mitigating catastrophic forgetting in large language models with self-synthesized rehearsal. arXiv preprint
arXiv:2403.01244 (2024).

[135] Wei Huang, Xudong Ma, Haotong Qin, Xingyu Zheng, Chengtao Lv, Hong Chen, Jie Luo, Xiaojuan Qi, Xianglong Liu,
and Michele Magno. 2024. How good are low-bit quantized llama3 models? an empirical study. arXiv e-prints (2024),
arXiv-2404.

[117

—

[119

—

[121

—

[122

—

[124

[l

[130

—

, Vol. 1, No. 1, Article . Publication date: July 2025.

Software Engineering for Large Language Models: Research Status, Challenges and the Road Ahead 47

[136] Wei Huang, Xingyu Zheng, Xudong Ma, Haotong Qin, Chengtao Lv, Hong Chen, Jie Luo, Xiaojuan Qi, Xianglong Liu,
and Michele Magno. 2024. An empirical study of llama3 quantization: From llms to mllms. Visual Intelligence 2, 1
(2024), 36.

[137] Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang, Bowen Yu, Keming
Lu, et al. 2024. Qwen2. 5-coder technical report. arXiv preprint arXiv:2409.12186 (2024).

[138] Bo Hui, Haolin Yuan, Neil Gong, Philippe Burlina, and Yinzhi Cao. 2024. Pleak: Prompt leaking attacks against large
language model applications. In Proceedings of the 2024 on ACM SIGSAC Conference on Computer and Communications
Security. 3600-3614.

[139] Fushuo Huo, Wenchao Xu, Jingcai Guo, Haozhao Wang, and Song Guo. 2024. C2KD: Bridging the Modality Gap
for Cross-Modal Knowledge Distillation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 16006-16015.

[140] Adam Ibrahim, Benjamin Thérien, Kshitij Gupta, Mats L Richter, Quentin Anthony, Timothée Lesort, Eugene Belilovsky,

and Irina Rish. 2024. Simple and scalable strategies to continually pre-train large language models. arXiv preprint

arXiv:2403.08763 (2024).

Intel. 2025. Intel® Software Guard Extensions (Intel® SGX). https://www.intel.com/content/www/us/en/products/

docs/accelerator-engines/software-guard-extensions.html.

[142] Myeongjun Jang, Antonios Georgiadis, Yiyun Zhao, and Fran Silavong. 2024. DriftWatch: A Tool that Automatically
Detects Data Drift and Extracts Representative Examples Affected by Drift. In Proceedings of the 2024 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 6:
Industry Track). 335-346.

[143] Hyesung Jeon, Yulhwa Kim, and Jae-joon Kim. 2024. L4q: Parameter efficient quantization-aware training on large
language models via lora-wise Isq. arXiv preprint arXiv:2402.04902 (2024).

[144] Jiaming Ji, Mickel Liu, Josef Dai, Xuehai Pan, Chi Zhang, Ce Bian, Boyuan Chen, Ruiyang Sun, Yizhou Wang, and
Yaodong Yang. 2024. Beavertails: Towards improved safety alignment of llm via a human-preference dataset. Advances
in Neural Information Processing Systems 36 (2024).

[145] Bowen Jiang, Yangxinyu Xie, Xiaomeng Wang, Weijie J Su, Camillo Jose Taylor, and Tanwi Mallick. 2024. Multi-modal
and multi-agent systems meet rationality: A survey. In ICML 2024 Workshop on LLMs and Cognition.

[146] Gangwei Jiang, Caigao Jiang, Zhaoyi Li, Sigiao Xue, Jun Zhou, Linqi Song, Defu Lian, and Ying Wei. 2024. Interpretable
catastrophic forgetting of large language model fine-tuning via instruction vector. arXiv preprint arXiv:2406.12227
(2024).

[147] Juyong Jiang, Fan Wang, Jiasi Shen, Sungju Kim, and Sunghun Kim. 2024. A survey on large language models for
code generation. arXiv preprint arXiv:2406.00515 (2024).

[148] Shuli Jiang, Swanand Ravindra Kadhe, Yi Zhou, Farhan Ahmed, Ling Cai, and Nathalie Baracaldo. 2024. Turning
Generative Models Degenerate: The Power of Data Poisoning Attacks. arXiv preprint arXiv:2407.12281 (2024).

[149] Xiaotang Jiang, Huan Wang, Yiliu Chen, Ziqi Wu, Lichuan Wang, Bin Zou, Yafeng Yang, Zongyang Cui, Yu Cai,
Tianhang Yu, et al. 2020. MNN: A universal and efficient inference engine. Proceedings of Machine Learning and
Systems 2 (2020), 1-13.

[150] Junfeng Jiao, Saleh Afroogh, Yiming Xu, and Connor Phillips. 2024. Navigating llm ethics: Advancements, challenges,
and future directions. arXiv preprint arXiv:2406.18841 (2024).

[151] Hongpeng Jin and Yanzhao Wu. 2024. CE-CoLLM: Efficient and Adaptive Large Language Models Through Cloud-Edge
Collaboration. arXiv preprint arXiv:2411.02829 (2024).

[152] Lyudong Jin, Yanning Zhang, Yanhan Li, Shurong Wang, Howard H Yang, Jian Wu, and Meng Zhang. 2025. MoE?:
Optimizing Collaborative Inference for Edge Large Language Models. arXiv preprint arXiv:2501.09410 (2025).

[153] Renren Jin, Jiangcun Du, Wuwei Huang, Wei Liu, Jian Luan, Bin Wang, and Deyi Xiong. 2024. A comprehensive
evaluation of quantization strategies for large language models. In Findings of the Association for Computational
Linguistics ACL 2024. 12186-12215.

[154] Jean Kaddour, Joshua Harris, Maximilian Mozes, Herbie Bradley, Roberta Raileanu, and Robert McHardy. 2023.
Challenges and applications of large language models. arXiv preprint arXiv:2307.10169 (2023).

[155] Damjan Kalajdzievski. 2024. Scaling laws for forgetting when fine-tuning large language models. arXiv preprint
arXiv:2401.05605 (2024).

[156] Junmo Kang, Leonid Karlinsky, Hongyin Luo, Zhen Wang, Jacob Hansen, James Glass, David Cox, Rameswar Panda,
Rogerio Feris, and Alan Ritter. 2024. Self-moe: Towards compositional large language models with self-specialized
experts. arXiv preprint arXiv:2406.12034 (2024).

[157] Enkelejda Kasneci, Kathrin Sef3ler, Stefan Kiichemann, Maria Bannert, Daryna Dementieva, Frank Fischer, Urs Gasser,
Georg Groh, Stephan Giinnemann, Eyke Hiillermeier, et al. 2023. ChatGPT for good? On opportunities and challenges
of large language models for education. Learning and individual differences 103 (2023), 102274.

[141

—

, Vol. 1, No. 1, Article . Publication date: July 2025.

https://www.intel.com/content/www/us/en/products/docs/accelerator-engines/software-guard-extensions.html
https://www.intel.com/content/www/us/en/products/docs/accelerator-engines/software-guard-extensions.html

48

[158]

[159]

[160]

[161]
[162]

[163]

[164]

[165]

[166]

[167]

[168]

[169

—

[170]

[171]

[172]

[173

=

[174

=

[175]

[176]

[177]

Hongzhou Rao, Yanjie Zhao, Xinyi Hou, Shenao Wang, and Haoyu Wang

Krishnaram Kenthapadi, Mehrnoosh Sameki, and Ankur Taly. 2024. Grounding and evaluation for large language
models: Practical challenges and lessons learned (survey). In Proceedings of the 30th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining. 6523-6533.

Mohammed Khan, Priyam Mehta, Ananth Sankar, Umashankar Kumaravelan, Sumanth Doddapaneni, Suriyaprasaad
B, Varun G, Sparsh Jain, Anoop Kunchukuttan, Pratyush Kumar, Raj Dabre, and Mitesh Khapra. 2024. IndicLLMSuite:
A Blueprint for Creating Pre-training and Fine-Tuning Datasets for Indian Languages. In Proceedings of the 62nd
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational
Linguistics, 15831-15879. https://doi.org/10.18653/v1/2024.acl-long.843

Mohammad Abdullah Matin Khan, M Saiful Bari, Xuan Long Do, Weishi Wang, Md Rizwan Parvez, and Shafiq Joty.
2023. xcodeeval: A large scale multilingual multitask benchmark for code understanding, generation, translation and
retrieval. arXiv preprint arXiv:2303.03004 (2023).

Sanghyeon Kim, Hyunmo Yang, Yunghyun Kim, Youngjoon Hong, and Eunbyung Park. 2024. Hydra: Multi-head
low-rank adaptation for parameter efficient fine-tuning. Neural Networks (2024), 106414.

Siwon Kim, Sangdoo Yun, Hwaran Lee, Martin Gubri, Sungroh Yoon, and Seong Joon Oh. 2024. Propile: Probing
privacy leakage in large language models. Advances in Neural Information Processing Systems 36 (2024).

Young Jin Kim, Ammar Ahmad Awan, Alexandre Muzio, Andres Felipe Cruz Salinas, Liyang Lu, Amr Hendy, Samyam
Rajbhandari, Yuxiong He, and Hany Hassan Awadalla. 2021. Scalable and efficient moe training for multitask
multilingual models. arXiv preprint arXiv:2109.10465 (2021).

Jing Yu Koh, Daniel Fried, and Russ R Salakhutdinov. 2024. Generating images with multimodal language models.
Advances in Neural Information Processing Systems 36 (2024).

Patrick Tser Jern Kon, Jiachen Liu, Qiuyi Ding, Yiming Qiu, Zhenning Yang, Yibo Huang, Jayanth Srinivasa, Myungjin
Lee, Mosharaf Chowdhury, and Ang Chen. 2025. Curie: Toward rigorous and automated scientific experimentation
with ai agents. arXiv preprint arXiv:2502.16069 (2025).

Rui Kong, Qiyang Li, Xinyu Fang, Qingtian Feng, Qingfeng He, Yazhu Dong, Weijun Wang, Yuanchun Li, Linghe
Kong, and Yunxin Liu. 2024. LoRA-Switch: Boosting the Efficiency of Dynamic LLM Adapters via System-Algorithm
Co-design. arXiv preprint arXiv:2405.17741 (2024).

Weirui Kuang, Bingchen Qian, Zitao Li, Daoyuan Chen, Dawei Gao, Xuchen Pan, Yuexiang Xie, Yaliang Li, Bolin
Ding, and Jingren Zhou. 2024. Federatedscope-llm: A comprehensive package for fine-tuning large language models
in federated learning. In Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining.
5260-5271.

Sonu Kumar, Anubhav Girdhar, Ritesh Patil, and Divyansh Tripathi. 2025. MCP Guardian: A Security-First Layer for
Safeguarding MCP-Based Al System. arXiv preprint arXiv:2504.12757 (2025).

Shachi H Kumar, Saurav Sahay, Sahisnu Mazumder, Eda Okur, Ramesh Manuvinakurike, Nicole Beckage, Hsuan
Su, Hung-yi Lee, and Lama Nachman. 2024. Decoding biases: Automated methods and llm judges for gender bias
detection in language models. arXiv preprint arXiv:2408.03907 (2024).

Alexey Kurakin, Natalia Ponomareva, Umar Syed, Liam MacDermed, and Andreas Terzis. 2023. Harnessing large-
language models to generate private synthetic text. arXiv preprint arXiv:2306.01684 (2023).

Malgorzata Lazuka, Andreea Anghel, and Thomas Parnell. 2024. LLM-Pilot: Characterize and Optimize Performance
of your LLM Inference Services. In SC24: International Conference for High Performance Computing, Networking,
Storage and Analysis. IEEE, 1-18.

Donghyun Lee and Mo Tiwari. 2024. Prompt infection: Llm-to-llm prompt injection within multi-agent systems.
arXiv preprint arXiv:2410.07283 (2024).

Weixian Lei, Yixiao Ge, Kun Yi, Jianfeng Zhang, Difei Gao, Dylan Sun, Yuying Ge, Ying Shan, and Mike Zheng Shou.
2024. Vit-lens: Towards omni-modal representations. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. 26647-26657.

Bingdong Li, Zixiang Di, Yanting Yang, Hong Qian, Peng Yang, Hao Hao, Ke Tang, and Aimin Zhou. 2024. It’s Morphing
Time: Unleashing the Potential of Multiple LLMs via Multi-objective Optimization. arXiv preprint arXiv:2407.00487
(2024).

Bohao Li, Yuying Ge, Yixiao Ge, Guangzhi Wang, Rui Wang, Ruimao Zhang, and Ying Shan. 2024. SEED-Bench:
Benchmarking Multimodal Large Language Models. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. 13299-13308.

Chen-An Li and Hung-Yi Lee. 2024. Examining forgetting in continual pre-training of aligned large language models.
arXiv preprint arXiv:2401.03129 (2024).

Dawei Li, Bohan Jiang, Liangjie Huang, Alimohammad Beigi, Chengshuai Zhao, Zhen Tan, Amrita Bhattacharjee,
Yuxuan Jiang, Canyu Chen, Tianhao Wu, et al. 2024. From generation to judgment: Opportunities and challenges of
llm-as-a-judge. arXiv preprint arXiv:2411.16594 (2024).

, Vol. 1, No. 1, Article . Publication date: July 2025.

https://doi.org/10.18653/v1/2024.acl-long.843

Software Engineering for Large Language Models: Research Status, Challenges and the Road Ahead 49

[178]

[179]
[180]
[181]
[182]
[183]
[184]

[185]

[186]

[187]

[188]

[189]

[190]
[191]

[192]

[193]

[194]

[195]

[196]

[197]

[198]

[199]

Dong Li, Meng Yan, Yaosheng Zhang, Zhongxin Liu, Chao Liu, Xiachong Zhang, Ting Chen, and David Lo. 2024.
CoSec: On-the-Fly Security Hardening of Code LLMs via Supervised Co-decoding. In Proceedings of the 33rd ACM
SIGSOFT International Symposium on Software Testing and Analysis. 1428—1439.

Hongyu Li, Liang Ding, Meng Fang, and Dacheng Tao. 2024. Revisiting Catastrophic Forgetting in Large Language
Model Tuning. arXiv preprint arXiv:2406.04836 (2024).

Haitao Li, Qian Dong, Junjie Chen, Huixue Su, Yujia Zhou, Qingyao Ai, Ziyi Ye, and Yiqun Liu. 2024. Llms-as-judges:
a comprehensive survey on llm-based evaluation methods. arXiv preprint arXiv:2412.05579 (2024).

Haoling Li, Xin Zhang, Xiao Liu, Yeyun Gong, Yifan Wang, Yujiu Yang, Qi Chen, and Peng Cheng. 2024. Gradient-Mask
Tuning Elevates the Upper Limits of LLM Performance. arXiv preprint arXiv:2406.15330 (2024).

Jia Li, Ge Li, Xuanming Zhang, Yihong Dong, and Zhi Jin. 2024. EvoCodeBench: An Evolving Code Generation
Benchmark Aligned with Real-World Code Repositories. arXiv preprint arXiv:2404.00599 (2024).

Jing Li, Zhijie Sun, Xuan He, Li Zeng, Yi Lin, Entong Li, Binfan Zheng, Rongqian Zhao, and Xin Chen. 2024. Locmoe:
A low-overhead moe for large language model training. arXiv preprint arXiv:2401.13920 (2024).

Luchang Li, Sheng Qian, Jie Lu, Lunxi Yuan, Rui Wang, and Qin Xie. 2024. Transformer-lite: High-efficiency
deployment of large language models on mobile phone gpus. arXiv preprint arXiv:2403.20041 (2024).

Miaomiao Li, Hao Chen, Yang Wang, Tingyuan Zhu, Weijia Zhang, Kaijie Zhu, Kam-Fai Wong, and Jindong Wang.
2025. Understanding and Mitigating the Bias Inheritance in LLM-based Data Augmentation on Downstream Tasks.
arXiv preprint arXiv:2502.04419 (2025).

Ming Li, Jiuhai Chen, Lichang Chen, and Tianyi Zhou. 2024. Can llms speak for diverse people? tuning llms via
debate to generate controllable controversial statements. arXiv preprint arXiv:2402.10614 (2024).

Miaoge Li, Jingcai Guo, Richard Yi Da Xu, Dongsheng Wang, Xiaofeng Cao, and Song Guo. 2024. TsCA: On the
Semantic Consistency Alignment via Conditional Transport for Compositional Zero-Shot Learning. arXiv preprint
arXiv:2408.08703 (2024).

Qinfeng Li, Zhigiang Shen, Zhenghan Qin, Yangfan Xie, Xuhong Zhang, Tianyu Du, Sheng Cheng, Xun Wang, and
Jianwei Yin. 2024. TransLinkGuard: Safeguarding Transformer Models Against Model Stealing in Edge Deployment.
In Proceedings of the 32nd ACM International Conference on Multimedia. 3479-3488.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao Mou, Marc Marone,
Christopher Akiki, Jia Li, Jenny Chim, et al. 2023. Starcoder: may the source be with you! arXiv preprint arXiv:2305.06161
(2023).

Tianhao Li, Shangjie Li, Binbin Xie, Deyi Xiong, and Baosong Yang. 2024. MoE-CT: a novel approach for large
language models training with resistance to catastrophic forgetting. arXiv preprint arXiv:2407.00875 (2024).

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning: Optimizing continuous prompts for generation. arXiv preprint
arXiv:2101.00190 (2021).

Yichen Li, Yun Peng, Yintong Huo, and Michael R Lyu. 2024. Enhancing llm-based coding tools through native
integration of ide-derived static context. In Proceedings of the 1st International Workshop on Large Language Models
for Code. 70-74.

Yannan Li, Yong Yu, Willy Susilo, Zhiyong Hong, and Mohsen Guizani. 2021. Security and privacy for edge intelligence
in 5G and beyond networks: Challenges and solutions. IEEE Wireless Communications 28, 2 (2021), 63-69.

Zhaowei Li, Wei Wang, YiQing Cai, Xu Qi, Pengyu Wang, Dong Zhang, Hang Song, Botian Jiang, Zhida Huang, and
Tao Wang. 2024. Unifiedmllm: Enabling unified representation for multi-modal multi-tasks with large language
model. arXiv preprint arXiv:2408.02503 (2024).

Zhaowei Li, Qi Xu, Dong Zhang, Hang Song, Yiging Cai, Qi Qi, Ran Zhou, Junting Pan, Zefeng Li, Vu Tu, et al. 2024.
Groundinggpt: Language enhanced multi-modal grounding model. In Proceedings of the 62nd Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers). 6657-6678.

Zhang Li, Biao Yang, Qiang Liu, Zhiyin Ma, Shuo Zhang, Jingxu Yang, Yabo Sun, Yuliang Liu, and Xiang Bai. 2024.
Monkey: Image resolution and text label are important things for large multi-modal models. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 26763-26773.

Ji Lin, Hongxu Yin, Wei Ping, Pavlo Molchanov, Mohammad Shoeybi, and Song Han. 2024. Vila: On pre-training
for visual language models. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition.
26689-26699.

Luyang Lin, Lingzhi Wang, Jinsong Guo, and Kam-Fai Wong. 2024. Investigating bias in llm-based bias detection:
Disparities between llms and human perception. arXiv preprint arXiv:2403.14896 (2024).

Sam Lin, Wenyue Hua, Zhenting Wang, Mingyu Jin, Lizhou Fan, and Yongfeng Zhang. 2025. EmojiPrompt: Generative
Prompt Obfuscation for Privacy-Preserving Communication with Cloud-based LLMs. In Proceedings of the 2025
Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language
Technologies (Volume 1: Long Papers). 12342-12361.

, Vol. 1, No. 1, Article . Publication date: July 2025.

50 Hongzhou Rao, Yanjie Zhao, Xinyi Hou, Shenao Wang, and Haoyu Wang

[200] Yang Lin, Xinyu Ma, Xu Chu, Yujie Jin, Zhibang Yang, Yasha Wang, and Hong Mei. 2024. Lora dropout as a sparsity
regularizer for overfitting control. arXiv preprint arXiv:2404.09610 (2024).

[201] Yujun Lin, Haotian Tang, Shang Yang, Zhekai Zhang, Guangxuan Xiao, Chuang Gan, and Song Han. 2024. Qserve:
W4a8kv4 quantization and system co-design for efficient llm serving. arXiv preprint arXiv:2405.04532 (2024).

[202] Yen-Ting Lin and Yun-Nung Chen. 2023. Llm-eval: Unified multi-dimensional automatic evaluation for open-domain
conversations with large language models. arXiv preprint arXiv:2305.13711 (2023).

[203] Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu

Zhang, Chong Ruan, et al. 2024. DeepSeek-V3 Technical Report. arXiv preprint arXiv:2412.19437 (2024).

Bingchang Liu, Chaoyu Chen, Zi Gong, Cong Liao, Huan Wang, Zhichao Lei, Ming Liang, Dajun Chen, Min Shen,

Hailian Zhou, et al. 2024. Mftcoder: Boosting code llms with multitask fine-tuning. In Proceedings of the 30th ACM

SIGKDD Conference on Knowledge Discovery and Data Mining. 5430-5441.

[205] Chengyuan Liu, Yangyang Kang, Shihang Wang, Lizhi Qing, Fubang Zhao, Changlong Sun, Kun Kuang, and Fei Wu.
2024. More than catastrophic forgetting: Integrating general capabilities for domain-specific llms. arXiv preprint
arXiv:2405.17830 (2024).

[206] Dong Liu. 2024. Contemporary Model Compression on Large Language Models Inference. arXiv preprint

arXiv:2409.01990 (2024).

Fuxiao Liu, Kevin Lin, Linjie Li, Jianfeng Wang, Yaser Yacoob, and Lijuan Wang. 2023. Mitigating hallucination in large

multi-modal models via robust instruction tuning. In The Twelfth International Conference on Learning Representations.

[208] Hongyi Liu, Zirui Liu, Ruixiang Tang, Jiayi Yuan, Shaochen Zhong, Yu-Neng Chuang, Li Li, Rui Chen, and Xia Hu.
2024. LoRA-as-an-Attack! Piercing LLM Safety Under The Share-and-Play Scenario. arXiv preprint arXiv:2403.00108
(2024).

[209] Jingyu Liu, Jiaen Lin, and Yong Liu. 2024. How much can rag help the reasoning of lm? arXiv preprint arXiv:2410.02338
(2024).

[210] Junwei Liu, Kaixin Wang, Yixuan Chen, Xin Peng, Zhenpeng Chen, Lingming Zhang, and Yiling Lou. 2024. Large
language model-based agents for software engineering: A survey. arXiv preprint arXiv:2409.02977 (2024).

[211] Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. 2024. Is your code generated by chatgpt really

correct? rigorous evaluation of large language models for code generation. Advances in Neural Information Processing

Systems 36 (2024).

Lian Liu, Haimeng Ren, Long Cheng, Zhaohui Xu, Yudong Pan, Mengdi Wang, Xiaowei Li, Yinhe Han, and Ying

Wang. 2024. COMET: Towards Partical W4A4KV4 LLMs Serving. arXiv preprint arXiv:2410.12168 (2024).

[213] Liang Liu, Dong Zhang, Shoushan Li, Guodong Zhou, and Erik Cambria. 2024. Two Heads are Better than One:
Zero-shot Cognitive Reasoning via Multi-LLM Knowledge Fusion. In Proceedings of the 33rd ACM International
Conference on Information and Knowledge Management. 1462-1472.

[214] Minghao Liu, Zonglin Di, Jiaheng Wei, Zhongruo Wang, Hengxiang Zhang, Ruixuan Xiao, Haoyu Wang, Jinlong
Pang, Hao Chen, Ankit Shah, et al. 2024. Automatic dataset construction (adc): Sample collection, data curation, and
beyond. arXiv preprint arXiv:2408.11338 (2024).

[215] Qidong Liu, Xian Wu, Xiangyu Zhao, Yuanshao Zhu, Derong Xu, Feng Tian, and Yefeng Zheng. 2024. When moe

meets llms: Parameter efficient fine-tuning for multi-task medical applications. In Proceedings of the 47th International

ACM SIGIR Conference on Research and Development in Information Retrieval. 1104-1114.

Shigang Liu, Di Cao, Junae Kim, Tamas Abraham, Paul Montague, Seyit Camtepe, Jun Zhang, and Yang Xiang. 2024.

{EaTVul}:{ChatGPT-based} Evasion Attack Against Software Vulnerability Detection. In 33rd USENIX Security

Symposium (USENIX Security 24). 7357-7374.

[217] Tong Liu, Zizhuang Deng, Guozhu Meng, Yuekang Li, and Kai Chen. 2024. Demystifying rce vulnerabilities in

llm-integrated apps. In Proceedings of the 2024 on ACM SIGSAC Conference on Computer and Communications Security.

1716-1730.

Tianyang Liu, Canwen Xu, and Julian McAuley. 2023. Repobench: Benchmarking repository-level code auto-

completion systems. arXiv preprint arXiv:2306.03091 (2023).

[219] Xin Liu, Yichen Zhu, Jindong Gu, Yunshi Lan, Chao Yang, and Yu Qiao. 2025. Mm-safetybench: A benchmark for safety
evaluation of multimodal large language models. In European Conference on Computer Vision. Springer, 386—403.

[220] Yang Liu, Jiahuan Cao, Chongyu Liu, Kai Ding, and Lianwen Jin. 2024. Datasets for large language models: A
comprehensive survey. arXiv preprint arXiv:2402.18041 (2024).

[221] YiLiu, Gelei Deng, Yuekang Li, Kailong Wang, Zihao Wang, Xiaofeng Wang, Tianwei Zhang, Yepang Liu, Haoyu Wang,

Yan Zheng, et al. 2023. Prompt Injection attack against LLM-integrated Applications. arXiv preprint arXiv:2306.05499

(2023).

Yupei Liu, Yuqi Jia, Runpeng Geng, Jinyuan Jia, and Neil Zhenqiang Gong. 2024. Formalizing and benchmarking

prompt injection attacks and defenses. In 33rd USENIX Security Symposium (USENIX Security 24). 1831-1847.

[204

flan)

[207

—

[212

—

[216

—

[218

=

[222

—

, Vol. 1, No. 1, Article . Publication date: July 2025.

Software Engineering for Large Language Models: Research Status, Challenges and the Road Ahead 51

[223] Yilun Liu, Shimin Tao, Xiaofeng Zhao, Ming Zhu, Wenbing Ma, Junhao Zhu, Chang Su, Yutai Hou, Miao Zhang, Min
Zhang, et al. 2024. Coachlm: Automatic instruction revisions improve the data quality in llm instruction tuning. In
2024 IEEE 40th International Conference on Data Engineering (ICDE). IEEE, 5184-5197.

[224] Zechun Liu, Barlas Oguz, Changsheng Zhao, Ernie Chang, Pierre Stock, Yashar Mehdad, Yangyang Shi, Raghuraman
Krishnamoorthi, and Vikas Chandra. 2023. Llm-qat: Data-free quantization aware training for large language models.
arXiv preprint arXiv:2305.17888 (2023).

[225] Zirui Liu, Jiayi Yuan, Hongye Jin, Shaochen Zhong, Zhaozhuo Xu, Vladimir Braverman, Beidi Chen, and Xia Hu. 2024.
Kivi: A tuning-free asymmetric 2bit quantization for kv cache. arXiv preprint arXiv:2402.02750 (2024).

[226] Lin Long, Rui Wang, Ruixuan Xiao, Junbo Zhao, Xiao Ding, Gang Chen, and Haobo Wang. 2024. On llms-driven
synthetic data generation, curation, and evaluation: A survey. arXiv preprint arXiv:2406.15126 (2024).

[227] Shayne Longpre, Gregory Yauney, Emily Reif, Katherine Lee, Adam Roberts, Barret Zoph, Denny Zhou, Jason Wei,
Kevin Robinson, David Mimno, et al. 2023. A pretrainer’s guide to training data: Measuring the effects of data age,
domain coverage, quality, & toxicity. arXiv preprint arXiv:2305.13169 (2023).

[228] Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier, Nouamane Tazi, Ao Tang,
Dmytro Pykhtar, Jiawei Liu, Yuxiang Weli, et al. 2024. Starcoder 2 and the stack v2: The next generation. arXiv
preprint arXiv:2402.19173 (2024).

[229] Dagqin Luo, Chengjian Feng, Yuxuan Nong, and Yiqing Shen. 2024. Autom3l: An automated multimodal machine
learning framework with large language models. In Proceedings of the 32nd ACM International Conference on Multimedia.
8586-8594.

[230] Junyu Luo, Weizhi Zhang, Ye Yuan, Yusheng Zhao, Junwei Yang, Yiyang Gu, Bohan Wu, Binqi Chen, Ziyue Qiao,
Qingqing Long, et al. 2025. Large Language Model Agent: A Survey on Methodology, Applications and Challenges.
arXiv preprint arXiv:2503.21460 (2025).

[231] Xiang Luo, Zhiwen Tang, Jin Wang, and Xuejie Zhang. 2024. Zero-Shot Cross-Domain Dialogue State Tracking via

Dual Low-Rank Adaptation. arXiv preprint arXiv:2407.21633 (2024).

Alisia Lupidi, Carlos Gemmell, Nicola Cancedda, Jane Dwivedi-Yu, Jason Weston, Jakob Foerster, Roberta Raileanu,

and Maria Lomeli. 2024. Source2synth: Synthetic data generation and curation grounded in real data sources. arXiv

preprint arXiv:2409.08239 (2024).

[233] Shuming Ma, Hongyu Wang, Lingxiao Ma, Lei Wang, Wenhui Wang, Shaohan Huang, Lifeng Dong, Ruiping Wang,
Jilong Xue, and Furu Wei. 2024. The era of 1-bit llms: All large language models are in 1.58 bits. arXiv preprint
arXiv:2402.17764 1 (2024).

[234] Wangin Ma, Chenyang Yang, and Christian Késtner. 2024. (Why) Is My Prompt Getting Worse? Rethinking Regression

Testing for Evolving LLM APIs. In Proceedings of the IEEE/ACM 3rd International Conference on Al Engineering-Software

Engineering for AL 166-171.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. 2023. Llm-pruner: On the structural pruning of large language models.

Advances in neural information processing systems 36 (2023), 21702-21720.

Zilin Ma, Yiyang Mei, Krzysztof Z Gajos, and Ian Arawjo. 2024. Schrodinger’s Update: User Perceptions of Uncertainties

in Proprietary Large Language Model Updates. In Extended Abstracts of the CHI Conference on Human Factors in

Computing Systems. 1-9.

[237] Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon, Nouha Dziri,

Shrimai Prabhumoye, Yiming Yang, et al. 2023. Self-refine: Iterative refinement with self-feedback. Advances in

Neural Information Processing Systems 36 (2023), 46534-46594.

Pratyush Maini, Hengrui Jia, Nicolas Papernot, and Adam Dziedzic. 2024. LLM Dataset Inference: Did you train on

my dataset? arXiv preprint arXiv:2406.06443 (2024).

Pratyush Maini, Hengrui Jia, Nicolas Papernot, and Adam Dziedzic. 2025. LLM Dataset Inference: Did you train on

my dataset? Advances in Neural Information Processing Systems 37 (2025), 124069-124092.

Paul Joe Maliakel, Shashikant Ilager, and Ivona Brandic. 2025. Investigating Energy Efficiency and Performance

Trade-offs in LLM Inference Across Tasks and DVFS Settings. arXiv preprint arXiv:2501.08219 (2025).

[241] Mihai Masala, Denis C Ilie-Ablachim, Alexandru Dima, Dragos Corlatescu, Miruna Zavelca, Ovio Olaru, Simina
Terian, Andrei Terian, Marius Leordeanu, Horia Velicu, et al. 2024. " Vorbe\c {s} ti Rom\" ane\c {s} te?" A Recipe to
Train Powerful Romanian LLMs with English Instructions. arXiv preprint arXiv:2406.18266 (2024).

[242] Arsalan Masoudifard, Mohammad Mowlavi Sorond, Moein Madadi, Mohammad Sabokrou, and Elahe Habibi. 2024.

Leveraging Graph-RAG and Prompt Engineering to Enhance LLM-Based Automated Requirement Traceability and

Compliance Checks. arXiv preprint arXiv:2412.08593 (2024).

Timothy R McIntosh, Teo Susnjak, Nalin Arachchilage, Tong Liu, Paul Watters, and Malka N Halgamuge. 2024.

Inadequacies of large language model benchmarks in the era of generative artificial intelligence. arXiv preprint

arXiv:2402.09880 (2024).

[232

—

[235

—

[236

—

[238

=

[239

—

[240

—

[243

-

, Vol. 1, No. 1, Article . Publication date: July 2025.

52

[244]

[245]

[246
[247]

=

[248]

[249]
[250]
[251]
[252]

[253]
[254]

[255]

[256]

[257]

[258]
[259]
[260]

[261]
[262]

[263]
[264]

[265]
[266]
[267]
[268]

Hongzhou Rao, Yanjie Zhao, Xinyi Hou, Shenao Wang, and Haoyu Wang

Matthieu Meeus, Shubham Jain, Marek Rei, and Yves-Alexandre de Montjoye. 2024. Did the neurons read your
book? document-level membership inference for large language models. In 33rd USENIX Security Symposium (USENLX
Security 24). 2369-2385.

Ahmed Menshawy, Zeeshan Nawaz, and Mahmoud Fahmy. 2024. Navigating Challenges and Technical Debt in Large
Language Models Deployment. In Proceedings of the 4th Workshop on Machine Learning and Systems. 192—-199.
Microsoft. 2025. Azure OpenAl Service. https://azure.microsoft.com/en-us/products/ai-services/openai-service.
Asit Mishra, Jorge Albericio Latorre, Jeff Pool, Darko Stosic, Dusan Stosic, Ganesh Venkatesh, Chong Yu, and Paulius
Micikevicius. 2021. Accelerating sparse deep neural networks. arXiv preprint arXiv:2104.08378 (2021).

Yuhong Mo, Hao Qin, Yushan Dong, Ziyi Zhu, and Zhenglin Li. 2024. Large language model (1lm) ai text generation
detection based on transformer deep learning algorithm. arXiv preprint arXiv:2405.06652 (2024).

Apoorve Mohan, Mengmei Ye, Hubertus Franke, Mudhakar Srivatsa, Zhuoran Liu, and Nelson Mimura Gonzalez. 2024.
Securing Al Inference in the Cloud: Is CPU-GPU Confidential Computing Ready?. In 2024 IEEE 17th International
Conference on Cloud Computing (CLOUD). IEEE, 164-175.

Ahmad Mobhsin, Helge Janicke, Adrian Wood, Igbal H Sarker, Leandros Maglaras, and Naeem Janjua. 2024. Can
we trust large language models generated code? a framework for in-context learning, security patterns, and code
evaluations across diverse llms. arXiv preprint arXiv:2406.12513 (2024).

Ida Momennejad, Hosein Hasanbeig, Felipe Vieira Frujeri, Hiteshi Sharma, Nebojsa Jojic, Hamid Palangi, Robert
Ness, and Jonathan Larson. 2024. Evaluating cognitive maps and planning in large language models with CogEval.
Advances in Neural Information Processing Systems 36 (2024).

Mahdi Morafah, Vyacheslav Kungurtsev, Hojin Chang, Chen Chen, and Bill Lin. 2024. Towards Diverse Device
Heterogeneous Federated Learning via Task Arithmetic Knowledge Integration. arXiv preprint arXiv:2409.18461
(2024).

Alhassan Mumuni and Fuseini Mumuni. 2025. Large language models for artificial general intelligence (AGI): A
survey of foundational principles and approaches. arXiv preprint arXiv:2501.03151 (2025).

Vineeth Sai Narajala and Idan Habler. 2025. Enterprise-Grade Security for the Model Context Protocol (MCP):
Frameworks and Mitigation Strategies. arXiv preprint arXiv:2504.08623 (2025).

Deepak Narayanan, Mohammad Shoeybi, Jared Casper, Patrick LeGresley, Mostofa Patwary, Vijay Korthikanti, Dmitri
Vainbrand, Prethvi Kashinkunti, Julie Bernauer, Bryan Catanzaro, et al. 2021. Efficient large-scale language model
training on gpu clusters using megatron-lm. In Proceedings of the international conference for high performance
computing, networking, storage and analysis. 1-15.

Humza Naveed, Asad Ullah Khan, Shi Qiu, Muhammad Saqib, Saeed Anwar, Muhammad Usman, Naveed Akhtar, Nick
Barnes, and Ajmal Mian. 2023. A comprehensive overview of large language models. arXiv preprint arXiv:2307.06435
(2023).

Nihal V Nayak, Yiyang Nan, Avi Trost, and Stephen H Bach. 2024. Learning to generate instruction tuning datasets
for zero-shot task adaptation. arXiv preprint arXiv:2402.18334 (2024).

Mahmoud Nazzal, Issa Khalil, Abdallah Khreishah, and NhatHai Phan. 2024. PromSec: Prompt Optimization for
Secure Generation of Functional Source Code with Large Language Models (LLMs). In Proceedings of the 2024 on
ACM SIGSAC Conference on Computer and Communications Security. 2266—2280.

Shiwen Ni, Dingwei Chen, Chengming Li, Xiping Hu, Ruifeng Xu, and Min Yang. 2023. Forgetting before learning:
Utilizing parametric arithmetic for knowledge updating in large language models. arXiv preprint arXiv:2311.08011
(2023).

Xuefei Ning, Zifu Wang, Shiyao Li, Zinan Lin, Peiran Yao, Tianyu Fu, Matthew B. Blaschko, Guohao Dali,
Huazhong Yang, and Yu Wang. 2024. Can LLMs Learn by Teaching for Better Reasoning? A Preliminary Study.
arXiv:2406.14629 [cs.CL] https://arxiv.org/abs/2406.14629

Kosuke Nishida, Kyosuke Nishida, and Kuniko Saito. 2024. Initialization of large language models via reparameteriza-
tion to mitigate loss spikes. arXiv preprint arXiv:2410.05052 (2024).

Dominic Novado, Eliyah Cohen, and Jacob Foster. 2024. Multi-tier privacy protection for large language models using
differential privacy. Authorea Preprints (2024).

NVIDIA. 2025. TensorRT: High-Performance Deep Learning Inference Library. https://github.com/NVIDIA/TensorRT.
Hyungjun Oh, Kihong Kim, Jaemin Kim, Sungkyun Kim, Junyeol Lee, Du-seong Chang, and Jiwon Seo. 2024. Exegpt:
Constraint-aware resource scheduling for llm inference. In Proceedings of the 29th ACM International Conference on
Architectural Support for Programming Languages and Operating Systems, Volume 2. 369-384.

Ollama. 2025. Ollama Official Website. https://ollama.com/. Accessed: 2025-05-15.

OpenAl 2023. OpenAl Platform API Reference. https://platform.openai.com/docs/api-reference/introduction.
OpenAL 2025. Introducing GPT-4.5. https://openai.com/index/introducing-gpt-4-5/ Accessed: 2025-04-20.
OpenAl 2025. OpenAl API Platform. https://openai.com/api/.

, Vol. 1, No. 1, Article . Publication date: July 2025.

https://azure.microsoft.com/en-us/products/ai-services/openai-service
https://arxiv.org/abs/2406.14629
https://arxiv.org/abs/2406.14629
https://github.com/NVIDIA/TensorRT
https://ollama.com/
https://platform.openai.com/docs/api-reference/introduction
https://openai.com/index/introducing-gpt-4-5/
https://openai.com/api/

Software Engineering for Large Language Models: Research Status, Challenges and the Road Ahead 53

[269] Malte Ostendorft, Pedro Ortiz Suarez, Lucas Fonseca Lage, and Georg Rehm. 2024. LLM-Datasets: An Open Framework

for Pretraining Datasets of Large Language Models. In First Conference on Language Modeling.

Tiago P Pagano, Rafael B Loureiro, Fernanda VN Lisboa, Rodrigo M Peixoto, Guilherme AS Guimaraes, Gustavo OR

Cruz, Maira M Araujo, Lucas L Santos, Marco AS Cruz, Ewerton LS Oliveira, et al. 2023. Bias and unfairness in

machine learning models: a systematic review on datasets, tools, fairness metrics, and identification and mitigation

methods. Big data and cognitive computing 7, 1 (2023), 15.

Artidoro Pagnoni, Ram Pasunuru, Pedro Rodriguez, John Nguyen, Benjamin Muller, Margaret Li, Chunting Zhou, Lili

Yu, Jason Weston, Luke Zettlemoyer, et al. 2024. Byte Latent Transformer: Patches Scale Better Than Tokens. arXiv

preprint arXiv:2412.09871 (2024).

[272] Leyi Pan, Aiwei Liu, Shiyu Huang, Yijian Lu, Xuming Hu, Lijie Wen, Irwin King, and Philip S Yu. 2025. Can LLM
Watermarks Robustly Prevent Unauthorized Knowledge Distillation? arXiv preprint arXiv:2502.11598 (2025).

[273] Jinlong Pang, Jiaheng Wei, Ankit Parag Shah, Zhaowei Zhu, Yaxuan Wang, Chen Qian, Yang Liu, Yujia Bao, and

Wei Wei. 2024. Improving Data Efficiency via Curating LLM-Driven Rating Systems. arXiv preprint arXiv:2410.10877

(2024).

Qi Pang, Shengyuan Hu, Wenting Zheng, and Virginia Smith. 2024. Attacking llm watermarks by exploiting their

strengths. In ICLR 2024 Workshop on Secure and Trustworthy Large Language Models.

Xiaoyi Pang, Jiahui Hu, Peng Sun, Ju Ren, and Zhibo Wang. 2024. When Federated Learning Meets Knowledge

Distillation. IEEE Wireless Communications 31, 5 (2024), 208-214.

[276] Samuel Panterino and Matthew Fellington. 2024. Dynamic moving target defense for mitigating targeted llm prompt
injection. Authorea Preprints (2024).

[277] David Pape, Sina Mavali, Thorsten Eisenhofer, and Lea Schonherr. 2024. Prompt obfuscation for large language

models. arXiv preprint arXiv:2409.11026 (2024).

Bhrij Patel, Vishnu Sashank Dorbala, and Amrit Singh Bedi. 2024. Embodied Question Answering via Multi-LLM

Systems. arXiv preprint arXiv:2406.10918 (2024).

Pratyush Patel, Esha Choukse, Chaojie Zhang, Aashaka Shah, fiigo Goiri, Saeed Maleki, and Ricardo Bianchini.

2024. Splitwise: Efficient generative llm inference using phase splitting. In 2024 ACM/IEEE 51st Annual International

Symposium on Computer Architecture (ISCA). IEEE, 118-132.

[280] Pankayaraj Pathmanathan, Souradip Chakraborty, Xiangyu Liu, Yongyuan Liang, and Furong Huang. 2024. Is

poisoning a real threat to LLM alignment? Maybe more so than you think. arXiv preprint arXiv:2406.12091 (2024).

Rodrigo Pedro, Miguel E Coimbra, Daniel Castro, Paulo Carreira, and Nuno Santos. 2024. Prompt-to-SQL Injections

in LLM-Integrated Web Applications: Risks and Defenses. In 2025 IEEE/ACM 47th International Conference on Software

Engineering (ICSE). IEEE Computer Society, 76-88.

Guilherme Penedo, Quentin Malartic, Daniel Hesslow, Ruxandra Cojocaru, Alessandro Cappelli, Hamza Alobeidli, Bap-

tiste Pannier, Ebtesam Almazrouei, and Julien Launay. 2023. The RefinedWeb dataset for Falcon LLM: outperforming

curated corpora with web data, and web data only. arXiv preprint arXiv:2306.01116 (2023).

[283] Letian Peng, Zilong Wang, Feng Yao, Zihan Wang, and Jingbo Shang. 2024. Metaie: Distilling a meta model from llm
for all kinds of information extraction tasks. arXiv preprint arXiv:2404.00457 (2024).

[284] Nikhil Pesati. 2024. Security Considerations for Large Language Model Use: Implementation Research in Securing

LLM-Integrated Applications. Available at SSRN 4962370 (2024).

Matthew E Peters, Sebastian Ruder, and Noah A Smith. 2019. To tune or not to tune? adapting pretrained representa-

tions to diverse tasks. arXiv preprint arXiv:1903.05987 (2019).

[286] Julien Piet, Maha Alrashed, Chawin Sitawarin, Sizhe Chen, Zeming Wei, Elizabeth Sun, Basel Alomair, and David
Wagner. 2024. Jatmo: Prompt injection defense by task-specific finetuning. In European Symposium on Research in
Computer Security. Springer, 105-124.

[287] Max Ploner and Alan Akbik. 2024. Parameter-Efficient Fine-Tuning: Is There An Optimal Subset of Parameters to

Tune?. In Findings of the Association for Computational Linguistics: EACL 2024. 1743-1759.

PyTorch Team. 2023. Executorch Overview. https://pytorch.org/executorch-overview.

Shuang Qiao, Haiyang Xu, Chenhong Cao, Wei Gong, Si Chen, and Jiangchuan Liu. 2025. PrismPrompt: Layering

prompt-enhanced cloud-edge collaborative language model towards healthcare. IEEE Network (2025).

Laiqiao Qin, Tianging Zhu, Wanlei Zhou, and Philip S Yu. 2024. Knowledge distillation in federated learning: A

survey on long lasting challenges and new solutions. arXiv preprint arXiv:2406.10861 (2024).

Guangiao Qu, Qiyuan Chen, Wei Wei, Zheng Lin, Xianhao Chen, and Kaibin Huang. 2025. Mobile edge intelligence

for large language models: A contemporary survey. IEEE Communications Surveys & Tutorials (2025).

Brandon Radosevich and John Halloran. 2025. MCP Safety Audit: LLMs with the Model Context Protocol Allow

Major Security Exploits. arXiv preprint arXiv:2504.03767 (2025).

Nikitha Rao, Kush Jain, Uri Alon, Claire Le Goues, and Vincent] Hellendoorn. 2023. CAT-LM training language

models on aligned code and tests. In 2023 38th IEEE/ACM International Conference on Automated Software Engineering

[270

-

[271

—

[274

flan)

[275

=

[278

[t

[279

—

[281

—

[282

—

[285

—

[288
[289

—

[290

=

[291

—

[292

—

[293

[t

, Vol. 1, No. 1, Article . Publication date: July 2025.

https://pytorch.org/executorch-overview

54

[294]

[295]

[296]

[297]
[298]

[299]

[300]

[301]

[302]

[303]

[304]
[305]
[306]

[307

—

[308]

[309]

[310]

[311]
[312]
[313]

[314]

[315]

[316]

, Vol.

Hongzhou Rao, Yanjie Zhao, Xinyi Hou, Shenao Wang, and Haoyu Wang

(ASE). IEEE, 409-420.

Hanoona Rasheed, Muhammad Maaz, Sahal Shaji, Abdelrahman Shaker, Salman Khan, Hisham Cholakkal, Rao M
Anwer, Eric Xing, Ming-Hsuan Yang, and Fahad S Khan. 2024. Glamm: Pixel grounding large multimodal model. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 13009-13018.

Deevashwer Rathee, Dacheng Li, Ion Stoica, Hao Zhang, and Raluca Popa. 2024. Mpc-minimized secure llm inference.
arXiv preprint arXiv:2408.03561 (2024).

Partha Pratim Ray and Mohan Pratap Pradhan. 2024. LLMEdge: A Novel Framework for Localized LLM Inferencing
at Resource Constrained Edge. In 2024 International Conference on IoT Based Control Networks and Intelligent Systems
(ICICNIS). IEEE, 1-8.

Weijieying Ren, Xinlong Li, Lei Wang, Tianxiang Zhao, and Wei Qin. 2024. Analyzing and Reducing Catastrophic
Forgetting in Parameter Efficient Tuning. arXiv preprint arXiv:2402.18865 (2024).

Martin Riddell, Ansong Ni, and Arman Cohan. 2024. Quantifying contamination in evaluating code generation
capabilities of language models. arXiv preprint arXiv:2403.04811 (2024).

Adam Roe, Samuel Richardson, Joseph Schneider, Anthony Cummings, Nicholas Forsberg, and Jonathan Klein. 2024.
Semantic drift mitigation in large language model knowledge retention using the residual knowledge stability concept.
Authorea Preprints (2024).

T-YLPG Ross and GKHP Dollar. 2017. Focal loss for dense object detection. In proceedings of the IEEE conference on
computer vision and pattern recognition. 2980—-2988.

Paul Rottger, Valentin Hofmann, Valentina Pyatkin, Musashi Hinck, Hannah Rose Kirk, Hinrich Schiitze, and Dirk
Hovy. 2024. Political compass or spinning arrow? towards more meaningful evaluations for values and opinions in
large language models. arXiv preprint arXiv:2402.16786 (2024).

Andreas Riicklé, Gregor Geigle, Max Glockner, Tilman Beck, Jonas Pfeiffer, Nils Reimers, and Iryna Gurevych. 2020.
Adapterdrop: On the efficiency of adapters in transformers. arXiv preprint arXiv:2010.11918 (2020).

Lorenzo Sani, Alex Iacob, Zeyu Cao, Bill Marino, Yan Gao, Tomas Paulik, Wanru Zhao, William F Shen, Preslav
Aleksandrov, Xinchi Qiu, et al. 2024. The future of large language model pre-training is federated. arXiv preprint
arXiv:2405.10853 (2024).

Helen Santos, Anthony Schmidt, Caspian Dimitrov, Christopher Antonucci, and Dorian Kuznetsov. 2024. Adaptive
contextualization in large language models using dynamic semantic drift encoding. Authorea Preprints (2024).
Pritam Sarkar and Ali Etemad. 2024. Xkd: Cross-modal knowledge distillation with domain alignment for video
representation learning. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 38. 14875-14885.
Robert Schmirler, Michael Heinzinger, and Burkhard Rost. 2024. Fine-tuning protein language models boosts
predictions across diverse tasks. Nature Communications 15, 1 (2024), 7407.

Philipp Schoenegger, Indre Tuminauskaite, Peter S Park, Rafael Valdece Sousa Bastos, and Philip E Tetlock. 2024.
Wisdom of the silicon crowd: LLM ensemble prediction capabilities rival human crowd accuracy. Science Advances 10,
45 (2024), eadp1528.

Leo Schwinn, David Dobre, Sophie Xhonneux, Gauthier Gidel, and Stephan Giinnemann. 2024. Soft prompt threats:
Attacking safety alignment and unlearning in open-source llms through the embedding space. Advances in Neural
Information Processing Systems 37 (2024), 9086—9116.

Weizhou Shen, Chenliang Li, Hongzhan Chen, Ming Yan, Xiaojun Quan, Hehong Chen, Ji Zhang, and Fei Huang.
2024. Small llms are weak tool learners: A multi-llm agent. arXiv preprint arXiv:2401.07324 (2024).

Xuan Shen, Pu Zhao, Yifan Gong, Zhenglun Kong, Zheng Zhan, Yushu Wu, Ming Lin, Chao Wu, Xue Lin, and Yanzhi
Wang. 2025. Search for efficient large language models. Advances in Neural Information Processing Systems 37 (2025),
139294-139315.

Jieke Shi, Zhou Yang, and David Lo. 2024. Efficient and green large language models for software engineering: Vision
and the road ahead. ACM Transactions on Software Engineering and Methodology (2024).

Weijia Shi, Anirudh Ajith, Mengzhou Xia, Yangsibo Huang, Daogao Liu, Terra Blevins, Danqi Chen, and Luke
Zettlemoyer. 2023. Detecting pretraining data from large language models. arXiv preprint arXiv:2310.16789 (2023).
Weiyan Shi, Ryan Shea, Si Chen, Chiyuan Zhang, Ruoxi Jia, and Zhou Yu. 2022. Just fine-tune twice: Selective
differential privacy for large language models. arXiv preprint arXiv:2204.07667 (2022).

Anup Shirgaonkar, Nikhil Pandey, Nazmiye Ceren Abay, Tolga Aktas, and Vijay Aski. 2024. Knowledge Distillation
Using Frontier Open-source LLMs: Generalizability and the Role of Synthetic Data. arXiv preprint arXiv:2410.18588
(2024).

Ilia Shumailov, Zakhar Shumaylov, Yiren Zhao, Yarin Gal, Nicolas Papernot, and Ross Anderson. 2023. The curse of
recursion: Training on generated data makes models forget. arXiv preprint arXiv:2305.17493 (2023).

Chenglei Si, Diyi Yang, and Tatsunori Hashimoto. 2024. Can llms generate novel research ideas? a large-scale human
study with 100+ nlp researchers. arXiv preprint arXiv:2409.04109 (2024).

1, No. 1, Article . Publication date: July 2025.

Software Engineering for Large Language Models: Research Status, Challenges and the Road Ahead 55

[317] Aditi Singh, Abul Ehtesham, Saket Kumar, and Tala Talaei Khoei. 2025. A Survey of the Model Context Protocol
(MCP): Standardizing Context to Enhance Large Language Models (LLMs). (2025).

[318] Neha Singh, Jatin Rupchandani, and Mainak Adhikari. 2023. Personalized federated learning for heterogeneous edge

device: Self-knowledge distillation approach. IEEE Transactions on Consumer Electronics 70, 1 (2023), 4625-4632.

Shivalika Singh, Freddie Vargus, Daniel Dsouza, Borje F Karlsson, Abinaya Mahendiran, Wei-Yin Ko, Herumb

Shandilya, Jay Patel, Deividas Mataciunas, Laura OMahony, et al. 2024. Aya dataset: An open-access collection for

multilingual instruction tuning. arXiv preprint arXiv:2402.06619 (2024).

Karan Singhal, Shekoofeh Azizi, Tao Tu, S Sara Mahdavi, Jason Wei, Hyung Won Chung, Nathan Scales, Ajay Tanwani,

Heather Cole-Lewis, Stephen Pfohl, et al. 2022. Large language models encode clinical knowledge. arXiv preprint

arXiv:2212.13138 (2022).

[321] Jonas Sjostrom and Stefan Cronholm. 2024. Meta-requirements for LLM-Based Knowledge Exploration Tools in
Information Systems Research. In International Conference on Design Science Research in Information Systems and
Technology. Springer, 424-439.

[322] Mahdi Soleimani, Grace Jia, In Gim, Seung-seob Lee, and Anurag Khandelwal. 2025. Wiretapping LLMs: Network
Side-Channel Attacks on Interactive LLM Services. Cryptology ePrint Archive (2025).

[323] Adir Solomon, Meira Levy, Dikla Agur-Cohen, Malak Younis, and Efrat Moshe. 2024. Requirements Engineering for

LLM: The Case of Digital Inquiries Application. In 2024 IEEE 32nd International Requirements Engineering Conference

Workshops (REW). IEEE, 370-375.

Yifan Song, Guoyin Wang, Sujian Li, and Bill Yuchen Lin. 2024. The good, the bad, and the greedy: Evaluation of llms

should not ignore non-determinism. arXiv preprint arXiv:2407.10457 (2024).

Shikhar Srivastava, Md Yousuf Harun, Robik Shrestha, and Christopher Kanan. 2024. Improving multimodal large

language models using continual learning. arXiv preprint arXiv:2410.19925 (2024).

Kaya Stechly, Karthik Valmeekam, and Subbarao Kambhampati. 2024. On the Self-Verification Limitations of Large

Language Models on Reasoning and Planning Tasks. arXiv:2402.08115 [cs.Al] https://arxiv.org/abs/2402.08115

[327] Jovan Stojkovic, Esha Choukse, Chaojie Zhang, Inigo Goiri, and Josep Torrellas. 2024. Towards Greener LLMs:
Bringing Energy-Efficiency to the Forefront of LLM Inference. arXiv preprint arXiv:2403.20306 (2024).

[328] Jovan Stojkovic, Chaojie Zhang, ffiigo Goiri, Josep Torrellas, and Esha Choukse. 2024. Dynamollm: Designing llm

inference clusters for performance and energy efficiency. arXiv preprint arXiv:2408.00741 (2024).

Winnie Street, John Oliver Siy, Geoff Keeling, Adrien Baranes, Benjamin Barnett, Michael McKibben, Tatenda Kanyere,

Alison Lentz, Robin IM Dunbar, et al. 2024. LLMs achieve adult human performance on higher-order theory of mind

tasks. arXiv preprint arXiv:2405.18870 (2024).

Dimitris Stripelis, Zijian Hu, Jipeng Zhang, Zhaozhuo Xu, Alay Dilipbhai Shah, Han Jin, Yuhang Yao, Salman

Avestimehr, and Chaoyang He. 2024. TensorOpera Router: A Multi-Model Router for Efficient LLM Inference. arXiv

preprint arXiv:2408.12320 (2024).

Haochen Sun, Jason Li, and Hongyang Zhang. 2024. zkllm: Zero knowledge proofs for large language models. In

Proceedings of the 2024 on ACM SIGSAC Conference on Computer and Communications Security. 4405-4419.

Liangtai Sun, Yang Han, Zihan Zhao, Da Ma, Zhennan Shen, Baocai Chen, Lu Chen, and Kai Yu. 2024. Scieval: A

multi-level large language model evaluation benchmark for scientific research. In Proceedings of the AAAI Conference

on Artificial Intelligence, Vol. 38. 19053-19061.

[333] Quan Sun, Yufeng Cui, Xiaosong Zhang, Fan Zhang, Qiying Yu, Yueze Wang, Yongming Rao, Jingjing Liu, Tiejun
Huang, and Xinlong Wang. 2024. Generative multimodal models are in-context learners. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 14398-14409.

[334] Xuchen Suo. 2024. Signed-Prompt: A new approach to prevent prompt injection attacks against LLM-integrated
applications. In AIP Conference Proceedings, Vol. 3194. AIP Publishing.

[335] Rao Surapaneni, Miku Jha, Michael Vakoc, and Todd Segal. 2025. Announcing the Agent2Agent Protocol (A2A).

https://developers.googleblog.com/en/a2a-a-new-era-of-agent-interoperability/ Accessed: 2025-04-25.

Zhendong Tan, Xingjun Zhang, and Zheng Wei. 2024. WRP: Weight Recover Prune for Structured Sparsity. In

Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers).

6433-6443.

[337] Jiaxi Tang, Yoel Drori, Daryl Chang, Maheswaran Sathiamoorthy, Justin Gilmer, Li Wei, Xinyang Yi, Lichan Hong, and
Ed H Chi. 2023. Improving training stability for multitask ranking models in recommender systems. In Proceedings of
the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. 4882-4893.

[338] DeepSpeed Team. 2020. DeepSpeed: Accelerating Deep Learning Training and Inference. https://github.com/

deepspeedai/DeepSpeed.

TensorFlow. 2025. TensorFlow Serving Guide. https://www.tensorflow.org/tfx/guide/serving Accessed: 2025-04-26.

Arun James Thirunavukarasu, Darren Shu Jeng Ting, Kabilan Elangovan, Laura Gutierrez, Ting Fang Tan, and Daniel

Shu Wei Ting. 2023. Large language models in medicine. Nature medicine 29, 8 (2023), 1930-1940.

[319

—

[320

=

[324

[l

[325

=

[326

—

[329

—

[330

-

[331

—

[332

—

[336

=

[339
[340

=

, Vol. 1, No. 1, Article . Publication date: July 2025.

https://arxiv.org/abs/2402.08115
https://arxiv.org/abs/2402.08115
https://developers.googleblog.com/en/a2a-a-new-era-of-agent-interoperability/
https://github.com/deepspeedai/DeepSpeed
https://github.com/deepspeedai/DeepSpeed
https://www.tensorflow.org/tfx/guide/serving

56 Hongzhou Rao, Yanjie Zhao, Xinyi Hou, Shenao Wang, and Haoyu Wang

[341] Chunlin Tian, Zhan Shi, Zhijiang Guo, Li Li, and Cheng-Zhong Xu. 2025. Hydralora: An asymmetric lora architecture
for efficient fine-tuning. Advances in Neural Information Processing Systems 37 (2025), 9565-9584.

[342] Kushal Tirumala, Daniel Simig, Armen Aghajanyan, and Ari Morcos. 2023. D4: Improving llm pretraining via document
de-duplication and diversification. Advances in Neural Information Processing Systems 36 (2023), 53983-53995.

[343] Meng Tong, Kejiang Chen, Jie Zhang, Yuang Qi, Weiming Zhang, Nenghai Yu, Tianwei Zhang, and Zhikun Zhang.
2023. InferDPT: Privacy-preserving inference for black-box large language model. arXiv preprint arXiv:2310.12214
(2023).

[344] E Paul Torrance. 1966. Torrance tests of creative thinking. Educational and psychological measurement (1966).

[345] Christoph Treude and Hideaki Hata. 2023. She elicits requirements and he tests: Software engineering gender bias in

large language models. In 2023 IEEE/ACM 20th International Conference on Mining Software Repositories (MSR). IEEE,

624-629.

Mojtaba Valipour, Mehdi Rezagholizadeh, Ivan Kobyzev, and Ali Ghodsi. 2022. Dylora: Parameter efficient tuning of

pre-trained models using dynamic search-free low-rank adaptation. arXiv preprint arXiv:2210.07558 (2022).

Karthik Valmeekam, Matthew Marquez, Alberto Olmo, Sarath Sreedharan, and Subbarao Kambhampati. 2024. Plan-

bench: An extensible benchmark for evaluating large language models on planning and reasoning about change.

Advances in Neural Information Processing Systems 36 (2024).

Tempest A van Schaik and Brittany Pugh. 2024. A field guide to automatic evaluation of llm-generated summaries. In

Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval.

2832-2836.

[349] vLLM Project. 2025. vLLM: A high-throughput and memory-efficient inference and serving engine for LLMs.
https://github.com/vllm-project/vllm.

[350] Gianmario Voria, Gemma Catolino, and Fabio Palomba. 2024. Is Attention All You Need? Toward a Conceptual Model

for Social Awareness in Large Language Models. In Proceedings of the 2024 IEEE/ACM First International Conference on

Al Foundation Models and Software Engineering (Lisbon, Portugal) (FORGE ’24). Association for Computing Machinery,

New York, NY, USA, 69-73. https://doi.org/10.1145/3650105.3652294

Ivan Vykopal, Simon Ostermann, and Marian Simko. 2024. Soft Language Prompts for Language Transfer. arXiv

preprint arXiv:2407.02317 (2024).

Angelina Wang, Alexander Liu, Ryan Zhang, Anat Kleiman, Leslie Kim, Dora Zhao, Iroha Shirai, Arvind Narayanan,

and Olga Russakovsky. 2022. REVISE: A tool for measuring and mitigating bias in visual datasets. International

Journal of Computer Vision 130, 7 (2022), 1790-1810.

Cunxiang Wang, Sirui Cheng, Qipeng Guo, Yuanhao Yue, Bowen Ding, Zhikun Xu, Yidong Wang, Xiangkun Hu,

Zheng Zhang, and Yue Zhang. 2023. Evaluating open-qa evaluation. Advances in Neural Information Processing

Systems 36 (2023), 77013-77042.

Cangqing Wang, Yutian Yang, Ruisi Li, Dan Sun, Ruicong Cai, Yuzhu Zhang, Chengqian Fu, and Lillian Floyd. 2024.

Adapting llms for efficient context processing through soft prompt compression. arXiv preprint arXiv:2404.04997

(2024).

Haoxiang Wang, Yong Lin, Wei Xiong, Rui Yang, Shizhe Diao, Shuang Qiu, Han Zhao, and Tong Zhang. 2024.

Arithmetic control of llms for diverse user preferences: Directional preference alignment with multi-objective rewards.

arXiv preprint arXiv:2402.18571 (2024).

Hanbin Wang, Zhenghao Liu, Shuo Wang, Ganqu Cui, Ning Ding, Zhiyuan Liu, and Ge Yu. 2023. Intervenor: Prompting

the coding ability of large language models with the interactive chain of repair. arXiv preprint arXiv:2311.09868 (2023).

[357] Jianxun Wang and Yixiang Chen. 2023. A review on code generation with llms: Application and evaluation. In 2023

IEEE International Conference on Medical Artificial Intelligence (MedAl). IEEE, 284-289.

Ruiqi Wang, Jiyu Guo, Cuiyun Gao, Guodong Fan, Chun Yong Chong, and Xin Xia. 2025. Can LLMs Replace Human

Evaluators? An Empirical Study of LLM-as-a-Judge in Software Engineering. arXiv preprint arXiv:2502.06193 (2025).

Sheng Wang, Liheng Chen, Jiyue Jiang, Boyang Xue, Lingpeng Kong, and Chuan Wu. 2024. LoRA Meets Dropout

under a Unified Framework. arXiv preprint arXiv:2403.00812 (2024).

Shijian Wang, Linxin Song, Jieyu Zhang, Ryotaro Shimizu, Ao Luo, Li Yao, Cunjian Chen, Julian McAuley, and

Hangian Wu. 2024. Template Matters: Understanding the Role of Instruction Templates in Multimodal Language

Model Evaluation and Training. arXiv:2412.08307 [cs.CV] https://arxiv.org/abs/2412.08307

Shang Wang, Tianqing Zhu, Bo Liu, Ming Ding, Xu Guo, Dayong Ye, Wanlei Zhou, and Philip S Yu. 2024. Unique

security and privacy threats of large language model: A comprehensive survey. arXiv preprint arXiv:2406.07973 (2024).

Tianduo Wang, Shichen Li, and Wei Lu. 2024. Self-Training with Direct Preference Optimization Improves Chain-of-

Thought Reasoning. arXiv:2407.18248 [cs.CL] https://arxiv.org/abs/2407.18248

Xiaofei Wang, Xiaoxu Ren, Chao Qiu, Zehui Xiong, Haipeng Yao, and Victor CM Leung. 2022. Integrating edge

intelligence and blockchain: What, why, and how. IEEE Communications Surveys & Tutorials 24, 4 (2022), 2193-2229.

=

[346

=

[347

—

[348

=

[351

—

[352

—

[353

[t

[354

flan

[355

-

[356

—

[358

=

[359

—

[360

—

[361

—

[362

—

[363

=

, Vol. 1, No. 1, Article . Publication date: July 2025.

https://github.com/vllm-project/vllm
https://doi.org/10.1145/3650105.3652294
https://arxiv.org/abs/2412.08307
https://arxiv.org/abs/2412.08307
https://arxiv.org/abs/2407.18248
https://arxiv.org/abs/2407.18248

Software Engineering for Large Language Models: Research Status, Challenges and the Road Ahead 57

[364]
[365]
[366]

[367]

[368]

[369]

[370]

[371]
[372]

[373
[374]

—_

Xujia Wang, Haiyan Zhao, Shuo Wang, Hanqing Wang, and Zhiyuan Liu. 2024. MALoRA: Mixture of Asymmetric
Low-Rank Adaptation for Enhanced Multi-Task Learning. arXiv preprint arXiv:2410.22782 (2024).

Yihan Wang, Jatin Chauhan, Wei Wang, and Cho-Jui Hsieh. 2024. Universality and limitations of prompt tuning.
Advances in Neural Information Processing Systems 36 (2024).

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A Smith, Daniel Khashabi, and Hannaneh Hajishirzi.
2022. Self-instruct: Aligning language models with self-generated instructions. arXiv preprint arXiv:2212.10560 (2022).

Yuanyi Wang, Haifeng Sun, Jiabo Wang, Jingyu Wang, Wei Tang, Qi Qi, Shaoling Sun, and Jianxin Liao. 2024. Towards
semantic consistency: Dirichlet energy driven robust multi-modal entity alignment. arXiv preprint arXiv:2401.17859
(2024).

Ya Wang, Zhijian Zhuo, Yutao Zeng, Xun Zhou, Jian Yang, and Xiaoqing Li. 2025. Scale-Distribution Decoupling:
Enabling Stable and Effective Training of Large Language Models. arXiv preprint arXiv:2502.15499 (2025).

Zeyu Wang. 2024. CausalBench: A Comprehensive Benchmark for Evaluating Causal Reasoning Capabilities of
Large Language Models. In Proceedings of the 10th SSIGHAN Workshop on Chinese Language Processing (SIGHAN-10).
143-151.

Zilan Wang, Junfeng Guo, Jiacheng Zhu, Yiming Li, Heng Huang, Muhao Chen, and Zhengzhong Tu. 2025. Sleepermark:
Towards robust watermark against fine-tuning text-to-image diffusion models. In Proceedings of the Computer Vision
and Pattern Recognition Conference. 8213-8224.

Noa Wegerhoff, Avishag Shapira, Yuval Elovici, and Asaf Shabtai. 2024. DataDetective: Dataset Watermarking for
Leaker Identification in ML Training. In ECAI 2024. 10S Press, 2442-2451.

Tianjun Wei, Wei Wen, Ruizhi Qiao, Xing Sun, and Jianghong Ma. [n. d.]. RocketEval: Efficient automated LLM
evaluation via grading checklist. In The Thirteenth International Conference on Learning Representations.

Weights & Biases. 2025. Weights & Biases: The Al Developer Platform. https://wandb.ai/site.

Chenxi Whitehouse, Monojit Choudhury, and Alham Fikri Aji. 2023. LLM-powered data augmentation for enhanced
cross-lingual performance. arXiv preprint arXiv:2305.14288 (2023).

[375] Jan Wichelmann, Anna Patschke, Luca Wilke, and Thomas Eisenbarth. 2023. Cipherfix: Mitigating ciphertext

[376]

[377]

[378]

[379]

[380]

[381]

[382]

[383]

[384]
[385]

[386]

[387]

{Side-Channel} attacks in software. In 32nd USENIX Security Symposium (USENIX Security 23). 6789-6806.

Grant Wilkins, Srinivasan Keshav, and Richard Mortier. 2024. Hybrid Heterogeneous Clusters Can Lower the Energy
Consumption of LLM Inference Workloads. In Proceedings of the 15th ACM International Conference on Future and
Sustainable Energy Systems. 506—513.

Sunghyeon Woo, Baeseong Park, Byeongwook Kim, Minjung Jo, Se Jung Kwon, Dongsuk Jeon, and Dongsoo Lee.
2025. DropBP: accelerating fine-tuning of large language models by dropping backward propagation. Advances in
Neural Information Processing Systems 37 (2025), 20170-20197.

Mitchell Wortsman, Tim Dettmers, Luke Zettlemoyer, Ari Morcos, Ali Farhadi, and Ludwig Schmidt. 2023. Stable and
low-precision training for large-scale vision-language models. Advances in Neural Information Processing Systems 36
(2023), 10271-10298.

Bingyang Wu, Ruidong Zhu, Zili Zhang, Peng Sun, Xuanzhe Liu, and Xin Jin. 2024. {dLoRA}: Dynamically Orches-
trating Requests and Adapters for {LoRA}{LLM} Serving. In 18th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 24). 911-927.

Likang Wu, Zhi Zheng, Zhaopeng Qiu, Hao Wang, Hongchao Gu, Tingjia Shen, Chuan Qin, Chen Zhu, Hengshu Zhu,
Qi Liu, et al. 2024. A survey on large language models for recommendation. World Wide Web 27, 5 (2024), 60.
Qinyun Wu, Chao Peng, Pengfei Gao, Ruida Hu, Haoyu Gan, Bo Jiang, Jinhe Tang, Zhiwen Deng, Zhanming Guan,
Cuiyun Gao, et al. 2024. Repomastereval: Evaluating code completion via real-world repositories. arXiv preprint
arXiv:2408.03519 (2024).

Xingyu Wu, Sheng-hao Wu, Jibin Wu, Liang Feng, and Kay Chen Tan. 2024. Evolutionary computation in the era of
large language model: Survey and roadmap. IEEE Transactions on Evolutionary Computation (2024).

Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yiwen Ding, Boyang Hong, Ming Zhang, Junzhe Wang, Senjie Jin,
Enyu Zhou, et al. 2025. The rise and potential of large language model based agents: A survey. Science China
Information Sciences 68, 2 (2025), 121101.

Chungqiu Steven Xia, Yinlin Deng, and Lingming Zhang. 2024. Top Leaderboard Ranking= Top Coding Proficiency,
Always? EvoEval: Evolving Coding Benchmarks via LLM. arXiv preprint arXiv:2403.19114 (2024).

Yifei Xia, Fangcheng Fu, Wentao Zhang, Jiawei Jiang, and Bin Cui. 2025. Efficient Multi-task LLM Quantization and
Serving for Multiple LoRA Adapters. Advances in Neural Information Processing Systems 37 (2025), 63686—-63714.
Qiangian Xie, Weiguang Han, Xiao Zhang, Yanzhao Lai, Min Peng, Alejandro Lopez-Lira, and Jimin Huang. 2024.
Pixiu: A comprehensive benchmark, instruction dataset and large language model for finance. Advances in Neural
Information Processing Systems 36 (2024).

Xingyu Xie, Shuicheng Yan, Kim-Chuan Toh, and Tianwen Wei. 2024. Optimization hyper-parameter laws for large
language models. arXiv preprint arXiv:2409.04777 (2024).

, Vol. 1, No. 1, Article . Publication date: July 2025.

https://wandb.ai/site

58 Hongzhou Rao, Yanjie Zhao, Xinyi Hou, Shenao Wang, and Haoyu Wang

[388] Chunlei Xin, Yaojie Lu, Hongyu Lin, Shuheng Zhou, Huijia Zhu, Weiqiang Wang, Zhongyi Liu, Xianpei Han, and Le
Sun. 2024. Beyond full fine-tuning: Harnessing the power of LoRA for multi-task instruction tuning. In Proceedings of
the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING
2024). 2307-2317.

Yi Xin, Siqi Luo, Haodi Zhou, Junlong Du, Xiaohong Liu, Yue Fan, Qing Li, and Yuntao Du. 2024. Parameter-efficient
fine-tuning for pre-trained vision models: A survey. arXiv preprint arXiv:2402.02242 (2024).

Ruibin Xiong, Yunchang Yang, Di He, Kai Zheng, Shuxin Zheng, Chen Xing, Huishuai Zhang, Yanyan Lan, Liwei
Wang, and Tieyan Liu. 2020. On layer normalization in the transformer architecture. In International Conference on
Machine Learning. PMLR, 10524-10533.

Cheng Xu, Shuhao Guan, Derek Greene, M Kechadi, et al. 2024. Benchmark Data Contamination of Large Language
Models: A Survey. arXiv preprint arXiv:2406.04244 (2024).

Frank F Xu, Uri Alon, Graham Neubig, and Vincent Josua Hellendoorn. 2022. A systematic evaluation of large
language models of code. In Proceedings of the 6th ACM SIGPLAN international symposium on machine programming.
1-10.

Hongling Xu, Yice Zhang, Qianlong Wang, and Ruifeng Xu. 2024. DS2-ABSA: Dual-Stream Data Synthesis with Label
Refinement for Few-Shot Aspect-Based Sentiment Analysis. arXiv:2412.14849 [cs.CL] https://arxiv.org/abs/2412.14849
Mengwei Xu, Dongqi Cai, Wangsong Yin, Shangguang Wang, Xin Jin, and Xuanzhe Liu. 2025. Resource-efficient
algorithms and systems of foundation models: A survey. Comput. Surveys 57, 5 (2025), 1-39.

Mengwei Xu, Wangsong Yin, Dongqi Cai, Rongjie Yi, Daliang Xu, Qipeng Wang, Bingyang Wu, Yihao Zhao, Chen
Yang, Shihe Wang, et al. 2024. A survey of resource-efficient llm and multimodal foundation models. arXiv preprint
arXiv:2401.08092 (2024).

Shaoyang Xu, Yonggi Leng, Linhao Yu, and Deyi Xiong. 2024. Self-Pluralising Culture Alignment for Large Language
Models. arXiv preprint arXiv:2410.12971 (2024).

[397] Wenda Xu, Guanglei Zhu, Xuandong Zhao, Liangming Pan, Lei Li, and William Wang. 2024. Pride and prejudice: LLM
amplifies self-bias in self-refinement. In Proceedings of the 62nd Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers). 15474-15492.

Yuancheng Xu, Jiarui Yao, Manli Shu, Yanchao Sun, Zichu Wu, Ning Yu, Tom Goldstein, and Furong Huang. 2025.
Shadowcast: Stealthy data poisoning attacks against vision-language models. Advances in Neural Information
Processing Systems 37 (2025), 57733-57764.

Zhentao Xu, Mark Jerome Cruz, Matthew Guevara, Tie Wang, Manasi Deshpande, Xiaofeng Wang, and Zheng Li. 2024.
Retrieval-augmented generation with knowledge graphs for customer service question answering. In Proceedings of
the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval. 2905-2909.
Zhaozhuo Xu, Zirui Liu, Beidi Chen, Shaochen Zhong, Yuxin Tang, WANG Jue, Kaixiong Zhou, Xia Hu, and Anshumali
Shrivastava. [n. d.]. Soft Prompt Recovers Compressed LLMs, Transferably. In Forty-first International Conference on
Machine Learning.

[401] Di Xue, Gang Zhao, Zhongqi Fan, Wei Li, Yahong Xu, Zhen Liu, Yin Liu, and Zhongliang Yuan. 2024. Poster: An
Exploration of Large Language Models in Malicious Source Code Detection. In Proceedings of the 2024 on ACM SIGSAC
Conference on Computer and Communications Security. 4940-4942.

Fuzhao Xue, Kabir Jain, Mahir Hitesh Shah, Zangwei Zheng, and Yang You. 2023. Instruction in the wild: A user-based
instruction dataset.

Fuzhao Xue, Zian Zheng, Yao Fu, Jinjie Ni, Zangwei Zheng, Wangchunshu Zhou, and Yang You. 2024. Openmoe: An
early effort on open mixture-of-experts language models. arXiv preprint arXiv:2402.01739 (2024).

Lixiang Yan, Lele Sha, Linxuan Zhao, Yuheng Li, Roberto Martinez-Maldonado, Guanliang Chen, Xinyu Li, Yuegiao
Jin, and Dragan Gasevi¢. 2024. Practical and ethical challenges of large language models in education: A systematic
scoping review. British Journal of Educational Technology 55, 1 (2024), 90-112.

Shenao Yan, Shen Wang, Yue Duan, Hanbin Hong, Kiho Lee, Doowon Kim, and Yuan Hong. 2024. An {LLM-
Assisted } {Easy-to-Trigger} Backdoor Attack on Code Completion Models: Injecting Disguised Vulnerabilities against
Strong Detection. In 33rd USENIX Security Symposium (USENIX Security 24). 1795-1812.

Diji Yang, Linda Zeng, Kezhen Chen, and Yi Zhang. 2024. Reinforcing Thinking through Reasoning-Enhanced Reward
Models. arXiv:2501.01457 [cs.LG] https://arxiv.org/abs/2501.01457

Fan Yang, Zehao Wang, Haoyu Zhang, Zhenhua Zhu, Xinhao Yang, Guohao Dai, and Yu Wang. 2024. Efficient
Deployment of Large Language Model across Cloud-Device Systems. In 2024 IEEE 37th International System-on-Chip
Conference (SOCC). IEEE, 1-6.

Huan Yang, Deyu Zhang, Yudong Zhao, Yuanchun Li, and Yunxin Liu. 2024. A First Look At Efficient And Secure
On-Device LLM Inference Against KV Leakage. In Proceedings of the 19th Workshop on Mobility in the Evolving Internet
Architecture. 13-18.

[389

—

[390

-

[391

—

[392

—

[393

[t

[394

[l

[395

=

[396

—

[398

[t

[399

—

[400

=

[402

—

[403

=

[404

flanr)

[405

—

[406

=

[407

—

[408

=

, Vol. 1, No. 1, Article . Publication date: July 2025.

https://arxiv.org/abs/2412.14849
https://arxiv.org/abs/2412.14849
https://arxiv.org/abs/2501.01457
https://arxiv.org/abs/2501.01457

Software Engineering for Large Language Models: Research Status, Challenges and the Road Ahead 59

[409] Kevin Yang, Dan Klein, Asli Celikyilmaz, Nanyun Peng, and Yuandong Tian. 2024. RLCD: Reinforcement Learning from
Contrastive Distillation for Language Model Alignment. arXiv:2307.12950 [cs.CL] https://arxiv.org/abs/2307.12950

[410] Shuo Yang, Wei-Lin Chiang, Lianmin Zheng, Joseph E Gonzalez, and Ion Stoica. 2023. Rethinking benchmark and
contamination for language models with rephrased samples. arXiv preprint arXiv:2311.04850 (2023).

[411] Xinyu Yang, Jixuan Leng, Geyang Guo, Jiawei Zhao, Ryumei Nakada, Linjun Zhang, Huaxiu Yao, and Beidi Chen. 2024.
S?FT: Efficient, Scalable and Generalizable LLM Fine-tuning by Structured Sparsity. arXiv preprint arXiv:2412.06289
(2024).

[412] Xiaoyu Yang, Jie Lu, and En Yu. 2024. Adapting Multi-modal Large Language Model to Concept Drift in the Long-tailed
Open World. arXiv preprint arXiv:2405.13459 (2024).

[413] Yijun Yang, Ruiyuan Gao, Xiao Yang, Jianyuan Zhong, and Qiang Xu. 2025. Guardt2i: Defending text-to-image models
from adversarial prompts. Advances in Neural Information Processing Systems 37 (2025), 76380-76403.

[414] Yuqi Yang, Peng-Tao Jiang, Qibin Hou, Hao Zhang, Jinwei Chen, and Bo Li. 2024. Multi-task dense prediction via
mixture of low-rank experts. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition.
27927-27937.

[415] Ziqing Yang, Michael Backes, Yang Zhang, and Ahmed Salem. 2024. Sos! soft prompt attack against open-source
large language models. arXiv preprint arXiv:2407.03160 (2024).

[416] Ziqi Yang, Xuhai Xu, Bingsheng Yao, Ethan Rogers, Shao Zhang, Stephen Intille, Nawar Shara, Guodong Gordon
Gao, and Dakuo Wang. 2024. Talk2Care: An LLM-based Voice Assistant for Communication between Healthcare
Providers and Older Adults. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 8, 2
(2024), 1-35.

[417] Zheming Yang, Yuanhao Yang, Chang Zhao, Qi Guo, Wenkai He, and Wen Ji. 2024. Perllm: Personalized inference
scheduling with edge-cloud collaboration for diverse llm services. arXiv preprint arXiv:2405.14636 (2024).

[418] Zhiqin Yang, Yonggang Zhang, Yu Zheng, Xinmei Tian, Hao Peng, Tongliang Liu, and Bo Han. 2023. Fedfed: Feature
distillation against data heterogeneity in federated learning. Advances in Neural Information Processing Systems 36
(2023), 60397-60428.

[419] Hongwei Yao, Jian Lou, and Zhan Qin. 2024. Poisonprompt: Backdoor attack on prompt-based large language
models. In ICASSP 2024-2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE,
7745-7749.

[420] Yifan Yao, Jinhao Duan, Kaidi Xu, Yuanfang Cai, Zhibo Sun, and Yue Zhang. 2024. A survey on large language model
(Ilm) security and privacy: The good, the bad, and the ugly. High-Confidence Computing (2024), 100211.

[421] Zhi Yao, Zhiqing Tang, Jiong Lou, Ping Shen, and Weijia Jia. 2024. Velo: A vector database-assisted cloud-edge
collaborative llm qos optimization framework. In 2024 IEEE International Conference on Web Services (ICWS). IEEE,
865-876.

[422] Zhewei Yao, Xiaoxia Wu, Cheng Li, Stephen Youn, and Yuxiong He. 2024. Exploring post-training quantization in llms
from comprehensive study to low rank compensation. In Proceedings of the AAAI Conference on Artificial Intelligence,
Vol. 38. 19377-19385.

[423] Zhiwei Yao, Yang Xu, Hongli Xu, Yunming Liao, and Zuan Xie. 2025. Efficient Deployment of Large Language Models
on Resource-constrained Devices. arXiv preprint arXiv:2501.02438 (2025).

[424] Jiayi Ye, Yanbo Wang, Yue Huang, Dongping Chen, Qihui Zhang, Nuno Moniz, Tian Gao, Werner Geyer, Chao Huang,
Pin-Yu Chen, et al. 2024. Justice or prejudice? quantifying biases in llm-as-a-judge. arXiv preprint arXiv:2410.02736
(2024).

[425] Rui Ye, Wenhao Wang, Jingyi Chai, Dihan Li, Zexi Li, Yinda Xu, Yaxin Du, Yanfeng Wang, and Siheng Chen. 2024.
Openfedllm: Training large language models on decentralized private data via federated learning. In Proceedings of
the 30th ACM SIGKDD conference on knowledge discovery and data mining. 6137-6147.

[426] Dongshuo Yin, Xueting Han, Bin Li, Hao Feng, and Jing Bai. 2024. Parameter-efficient is not sufficient: Exploring pa-
rameter, memory, and time efficient adapter tuning for dense predictions. In Proceedings of the 32nd ACM International
Conference on Multimedia. 1398-1406.

[427] Wangsong Yin, Mengwei Xu, Yuanchun Li, and Xuanzhe Liu. 2024. Llm as a system service on mobile devices. arXiv
preprint arXiv:2403.11805 (2024).

[428] Luke Yoffe, Alfonso Amayuelas, and William Yang Wang. 2024. DebUnc: mitigating hallucinations in large language
model agent communication with uncertainty estimations. arXiv preprint arXiv:2407.06426 (2024).

[429] Runyi Yu, Zhennan Wang, Yinhuai Wang, Kehan Li, Chang Liu, Haoyi Duan, Xiangyang Ji, and Jie Chen. 2023. Lape:
Layer-adaptive position embedding for vision transformers with independent layer normalization. In Proceedings of
the IEEE/CVF International Conference on Computer Vision. 5886-5896.

[430] Yangyang Yu, Zhiyuan Yao, Haohang Li, Zhiyang Deng, Yuechen Jiang, Yupeng Cao, Zhi Chen, Jordan Suchow,
Zhenyu Cui, Rong Liu, et al. 2025. Fincon: A synthesized llm multi-agent system with conceptual verbal reinforcement
for enhanced financial decision making. Advances in Neural Information Processing Systems 37 (2025), 137010-137045.

, Vol. 1, No. 1, Article . Publication date: July 2025.

https://arxiv.org/abs/2307.12950
https://arxiv.org/abs/2307.12950

60

[431]

[432]

[433]

[434]

[435]

[436]

[437

—

[438]
[439]

[440]

Hongzhou Rao, Yanjie Zhao, Xinyi Hou, Shenao Wang, and Haoyu Wang

Yue Yu, Yuchen Zhuang, Jieyu Zhang, Yu Meng, Alexander J Ratner, Ranjay Krishna, Jiaming Shen, and Chao Zhang.
2024. Large language model as attributed training data generator: A tale of diversity and bias. Advances in Neural
Information Processing Systems 36 (2024).

Zhaojian Yu, Xin Zhang, Ning Shang, Yangyu Huang, Can Xu, Yishujie Zhao, Wenxiang Hu, and Qiufeng Yin.
2024. Wavecoder: Widespread and versatile enhancement for code large language models by instruction tuning.
In Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers).
5140-5153.

Ann Yuan, Daphne Ippolito, Vitaly Nikolaev, Chris Callison-Burch, Andy Coenen, and Sebastian Gehrmann. 2021.
Synthbio: A case study in human-ai collaborative curation of text datasets. arXiv preprint arXiv:2111.06467 (2021).
Siyu Yuan, Kaitao Song, Jiangjie Chen, Xu Tan, Yongliang Shen, Ren Kan, Dongsheng Li, and Deqing Yang. 2024.
Easytool: Enhancing llm-based agents with concise tool instruction. arXiv preprint arXiv:2401.06201 (2024).
Daoguang Zan, Zhirong Huang, Ailun Yu, Shaoxin Lin, Yifan Shi, Wei Liu, Dong Chen, Zongshuai Qi, Hao Yu, Lei Yu,
et al. 2024. Swe-bench-java: A github issue resolving benchmark for java. arXiv preprint arXiv:2408.14354 (2024).
Zhengran Zeng, Yidong Wang, Rui Xie, Wei Ye, and Shikun Zhang. 2024. Coderujb: An executable and unified java
benchmark for practical programming scenarios. In Proceedings of the 33rd ACM SIGSOFT International Symposium on
Software Testing and Analysis. 124-136.

Yuexiang Zhai, Shengbang Tong, Xiao Li, Mu Cai, Qing Qu, Yong Jae Lee, and Yi Ma. 2024. Investigating the
catastrophic forgetting in multimodal large language model fine-tuning. In Conference on Parsimony and Learning.
PMLR, 202-227.

Qiusi Zhan, Zhixiang Liang, Zifan Ying, and Daniel Kang. 2024. Injecagent: Benchmarking indirect prompt injections
in tool-integrated large language model agents. arXiv preprint arXiv:2403.02691 (2024).

Biao Zhang, Zhongtao Liu, Colin Cherry, and Orhan Firat. 2024. When scaling meets llm finetuning: The effect of
data, model and finetuning method. arXiv preprint arXiv:2402.17193 (2024).

Duzhen Zhang, Yahan Yu, Jiahua Dong, Chenxing Li, Dan Su, Chenhui Chu, and Dong Yu. 2024. Mm-llms: Recent
advances in multimodal large language models. arXiv preprint arXiv:2401.13601 (2024).

[441] Jiaming Zhang, Xingjun Ma, Xin Wang, Lingyu Qiu, Jiaqi Wang, Yu-Gang Jiang, and Jitao Sang. 2024. Adversarial

[442]

[443]
[444]

[445]

[446]

[447]
[448]

[449]

[450]

prompt tuning for vision-language models. In European Conference on Computer Vision. Springer, 56-72.

Lin Zhang, Li Shen, Liang Ding, Dacheng Tao, and Ling-Yu Duan. 2022. Fine-tuning global model via data-free
knowledge distillation for non-iid federated learning. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition. 10174-10183.

Mingjin Zhang, Xiaoming Shen, Jiannong Cao, Zeyang Cui, and Shan Jiang. 2024. Edgeshard: Efficient llm inference
via collaborative edge computing. IEEE Internet of Things Journal (2024).

Nan Zhang, Yanchi Liu, Xujiang Zhao, Wei Cheng, Runxue Bao, Rui Zhang, Prasenjit Mitra, and Haifeng Chen. 2024.
Pruning as a Domain-specific LLM Extractor. arXiv preprint arXiv:2405.06275 (2024).

Qingru Zhang, Minshuo Chen, Alexander Bukharin, Nikos Karampatziakis, Pengcheng He, Yu Cheng, Weizhu Chen,
and Tuo Zhao. 2023. AdaLoRA: Adaptive budget allocation for parameter-efficient fine-tuning. arXiv preprint
arXiv:2303.10512 (2023).

Quanjun Zhang, Chunrong Fang, Yang Xie, YuXiang Ma, Weisong Sun, Yun Yang, and Zhenyu Chen. 2024. A
systematic literature review on large language models for automated program repair. arXiv preprint arXiv:2405.01466
(2024).

Xiaojin Zhang, Yahao Pang, Yan Kang, Wei Chen, Lixin Fan, Hai Jin, and Qiang Yang. 2025. No free lunch theorem
for privacy-preserving llm inference. Artificial Intelligence (2025), 104293.

Bowen Zhao, Hannaneh Hajishirzi, and Qingqing Cao. 2024. Apt: Adaptive pruning and tuning pretrained language
models for efficient training and inference. arXiv preprint arXiv:2401.12200 (2024).

Haiyan Zhao, Hanjie Chen, Fan Yang, Ninghao Liu, Huiqi Deng, Hengyi Cai, Shuaigiang Wang, Dawei Yin, and
Mengnan Du. 2024. Explainability for large language models: A survey. ACM Transactions on Intelligent Systems and
Technology 15, 2 (2024), 1-38.

Huagqin Zhao, Zhengliang Liu, Zihao Wu, Yiwei Li, Tianze Yang, Peng Shu, Shaochen Xu, Haixing Dai, Lin Zhao,
Gengchen Mai, et al. 2024. Revolutionizing finance with llms: An overview of applications and insights. arXiv preprint
arXiv:2401.11641 (2024).

[451] Juntao Zhao, Borui Wan, Yanghua Peng, Haibin Lin, and Chuan Wu. 2024. LLM-PQ: Serving LLM on Heterogeneous

Clusters with Phase-Aware Partition and Adaptive Quantization. arXiv preprint arXiv:2403.01136 (2024).

[452] Jiachen Zhao, Wenlong Zhao, Andrew Drozdov, Benjamin Rozonoyer, Md Arafat Sultan, Jay Yoon Lee, Mohit Iyyer,

and Andrew McCallum. 2024. Multistage collaborative knowledge distillation from a large language model for
semi-supervised sequence generation. In Proceedings of the 62nd Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers). 14201-14214.

, Vol. 1, No. 1, Article . Publication date: July 2025.

Software Engineering for Large Language Models: Research Status, Challenges and the Road Ahead 61

[453] Weilin Zhao, Yuxiang Huang, Xu Han, Zhiyuan Liu, Zhengyan Zhang, and Maosong Sun. 2023. CPET: Effective
parameter-efficient tuning for compressed large language models. arXiv preprint arXiv:2307.07705 (2023).

[454] Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yinggian Min, Beichen Zhang, Junjie
Zhang, Zican Dong, et al. 2023. A survey of large language models. arXiv preprint arXiv:2303.18223 1, 2 (2023).

[455] Zesen Zhao, Shuowei Jin, and Z Morley Mao. 2024. Eagle: Efficient training-free router for multi-llm inference. arXiv
preprint arXiv:2409.15518 (2024).

[456] Junhao Zheng, Xidi Cai, Shengjie Qiu, and Qianli Ma. 2025. Spurious Forgetting in Continual Learning of Language
Models. arXiv preprint arXiv:2501.13453 (2025).

[457] Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin, Zhuohan Li,
Dacheng Li, Eric Xing, et al. 2024. Judging llm-as-a-judge with mt-bench and chatbot arena. Advances in Neural
Information Processing Systems 36 (2024).

[458] Peter Yong Zhong, Siyuan Chen, Ruiqi Wang, McKenna McCall, Ben L Titzer, and Heather Miller. 2025. RTBAS:
Defending LLM Agents Against Prompt Injection and Privacy Leakage. arXiv preprint arXiv:2502.08966 (2025).

[459] Andy Zhou, Bo Li, and Haohan Wang. 2025. Robust prompt optimization for defending language models against

jailbreaking attacks. Advances in Neural Information Processing Systems 37 (2025), 40184-40211.

Chunting Zhou, Lili Yu, Arun Babu, Kushal Tirumala, Michihiro Yasunaga, Leonid Shamis, Jacob Kahn, Xuezhe Ma,

Luke Zettlemoyer, and Omer Levy. 2024. Transfusion: Predict the next token and diffuse images with one multi-modal

model. arXiv preprint arXiv:2408.11039 (2024).

[461] Hao Zhou, Chengming Hu, Ye Yuan, Yufei Cui, Yili Jin, Can Chen, Haolun Wu, Dun Yuan, Li Jiang, Di Wu, et al. 2024.
Large language model (Ilm) for telecommunications: A comprehensive survey on principles, key techniques, and
opportunities. IEEE Communications Surveys & Tutorials (2024).

[462] Han Zhou, Xingchen Wan, Ivan Vuli¢, and Anna Korhonen. 2024. Autopeft: Automatic configuration search for
parameter-efficient fine-tuning. Transactions of the Association for Computational Linguistics 12 (2024), 525-542.

[463] Kun Zhou, Yutao Zhu, Zhipeng Chen, Wentong Chen, Wayne Xin Zhao, Xu Chen, Yankai Lin, Ji-Rong Wen, and
Jiawei Han. 2023. Don’t make your llm an evaluation benchmark cheater. arXiv preprint arXiv:2311.01964 (2023).

[464] Xin Zhou, Kisub Kim, Bowen Xu, Jiakun Liu, DongGyun Han, and David Lo. 2023. The devil is in the tails: How
long-tailed code distributions impact large language models. arXiv preprint arXiv:2309.03567 (2023).

[465] Yuhang Zhou and Wei Ai. 2024. Teaching-Assistant-in-the-Loop: Improving Knowledge Distillation from Imperfect
Teacher Models in Low-Budget Scenarios. arXiv preprint arXiv:2406.05322 (2024).

[466] Kaijie Zhu, Jindong Wang, Qinlin Zhao, Ruochen Xu, and Xing Xie. 2024. Dynamic Evaluation of Large Language
Models by Meta Probing Agents. In Forty-first International Conference on Machine Learning. https://openreview.net/
forum?id=DwTgy1hXXo

[467] Pengfei Zhu, Yang Sun, Bing Cao, and Qinghua Hu. 2024. Task-customized mixture of adapters for general image
fusion. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 7099-7108.

[468] Qihao Zhu, Daya Guo, Zhihong Shao, Dejian Yang, Peiyi Wang, Runxin Xu, Y Wu, Yukun Li, Huazuo Gao, Shirong
Ma, et al. 2024. DeepSeek-Coder-V2: Breaking the Barrier of Closed-Source Models in Code Intelligence. arXiv
preprint arXiv:2406.11931 (2024).

[469] Xun Zhu, Ying Hu, Fanbin Mo, Miao Li, and Ji Wu. 2024. Uni-Med: A Unified Medical Generalist Foundation Model
For Multi-Task Learning Via Connector-MoE. arXiv preprint arXiv:2409.17508 (2024).

[470] Xunyu Zhu, Jian Li, Yong Liu, Can Ma, and Weiping Wang. 2024. A survey on model compression for large language
models. Transactions of the Association for Computational Linguistics 12 (2024), 1556-1577.

[471] Yutao Zhu, Huaying Yuan, Shuting Wang, Jiongnan Liu, Wenhan Liu, Chenlong Deng, Haonan Chen, Zheng Liu,

Zhicheng Dou, and Ji-Rong Wen. 2023. Large language models for information retrieval: A survey. arXiv preprint

arXiv:2308.07107 (2023).

Zhuangdi Zhu, Junyuan Hong, and Jiayu Zhou. 2021. Data-free knowledge distillation for heterogeneous federated

learning. In International conference on machine learning. PMLR, 12878-12889.

[473] KOU Zili, Sharad Sinha, HE Wenjian, and Wei Zhang. 2023. Cache side-channel attacks and defenses of the sliding
window algorithm in TEEs. In 2023 Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE, 1-6.

[474] Itamar Zimerman, Allon Adir, Ehud Aharoni, Matan Avitan, Moran Baruch, Nir Drucker, Jenny Lerner, Ramy Masalha,
Reut Meiri, and Omri Soceanu. 2024. Power-softmax: Towards secure llm inference over encrypted data. arXiv
preprint arXiv:2410.09457 (2024).

[475] SM Zobaed and Mohsen Amini Salehi. 2025. Confidential Computing Across Edge-To-Cloud for Machine Learning: A
Survey Study. Software: Practice and Experience (2025).

[476] Nicolas Zucchet and Antonio Orvieto. 2025. Recurrent neural networks: vanishing and exploding gradients are not
the end of the story. Advances in Neural Information Processing Systems 37 (2025), 139402-139443.

[460

=

[472

—

, Vol. 1, No. 1, Article . Publication date: July 2025.

https://openreview.net/forum?id=DwTgy1hXXo
https://openreview.net/forum?id=DwTgy1hXXo

	Abstract
	1 Introduction
	2 Scope and significance
	2.1 Scope
	2.2 Significance

	3 Requirements Engineering
	3.1 Research Status
	3.2 Challenges
	3.3 Road Ahead

	4 Dataset Construction
	4.1 Data Quality
	4.2 Data Security

	5 Development and Enhancement
	5.1 Pre-Training
	5.2 Fine-Tuning
	5.3 Model Integration
	5.4 Model Compression
	5.5 PEFT

	6 Testing and Evaluation
	6.1 What to Test and Evaluate
	6.2 Where to Test and Evaluate
	6.3 How to Test and Evaluate

	7 Deployment and Operations
	7.1 Cluster Deployment
	7.2 Edge Deployment
	7.3 Hybrid Deployment

	8 Maintenance and Evolution
	8.1 Research Status
	8.2 Challenges
	8.3 Road Ahead

	9 Related work
	10 Conclusion
	References

