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The rapid advancement of large language models (LLMs) has redefined artificial intelligence (AI), pushing the
boundaries of Al research and enabling unbounded possibilities for both academia and the industry. However,
LLM development faces increasingly complex challenges throughout its lifecycle, yet no existing research
systematically explores these challenges and solutions from the perspective of software engineering (SE)
approaches. To fill the gap, we systematically analyze research status throughout the LLM development
lifecycle, divided into six phases: requirements engineering, dataset construction, model development and
enhancement, testing and evaluation, deployment and operations, and maintenance and evolution. We then
conclude by identifying the key challenges for each phase and presenting potential research directions to
address these challenges. In general, we provide valuable insights from an SE perspective to facilitate future
advances in LLM development.

1 INTRODUCTION

In recent years, large language models (LLMs) have advanced rapidly, leading to their perfor-
mance exceeding human capabilities in certain domains [93, 307, 316, 329, 457]. Alongside this
progress, emerging technologies such as Al-driven code generation [107, 137, 228, 468], multimodal
models [294, 333], and Al agents [383] are also evolving at an unprecedented pace. These develop-
ments are rapidly expanding the role of LLMs in critical domains such as software development,
healthcare [95, 100, 416], and finance [430, 450]. As LLMs become foundational infrastructure for
general-purpose intelligence [253], ensuring their reliability, efficiency, and adaptability is impor-
tant as well as challenging for the software engineering (SE) community. Therefore, a systematic
investigation into the development and engineering of LLMs is essential.

The development of LLMs is a multifaceted process, from dataset preparation and model
training to deployment and maintenance. SE plays a central role throughout this lifecycle,
offering foundational principles and methodologies to manage complexity, ensure robustness,
and support scalability. These are increasingly embodied in an ecosystem of specialized tools
and frameworks that facilitate each stage of the development process. For instance, Hugging
Face provides tools such as Transformers [105] for model training and the PEFT library [75] for
efficient fine-tuning methods. Micros ft’s DeepSpeed [338] enhances large-scale model training
through deep learning optimizations, while OpenAl offers LLM APIs [266] that enable interaction
with the GPT family models. Additionally, evaluation frameworks like LM-Eval-Harness [72]
and community-driven platforms such as the Open LLM Leaderboard [74] offer standardized
benchmarks. Development toolkits like LangChain [28] modularize and streamline the construction
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of LLM-based applications. These tools embody SE principles and reflect the increasing need for
structured, reliable, and scalable LLM development pipelines.

Beyond model training and development, SE also plays a critical role in optimizing the effi-
ciency and scalability of LLM deployment. We can develop tools that integrate techniques such
as model compression, quantization, and inference optimization to reduce latency and resource
consumption. For example, TensorRT [263] and vLLM [349] employ these techniques to enable
cost-effective and efficient LLM inference in production environments. Furthermore, specialized
protocols like Model Context Protocol (MCP) [14] and Agent-to-Agent (A2A) [335] stan-
dardize interactions between LLM-based agents, tools, and multi-agent systems, ensuring
interoperability and streamlined integration in production pipelines. SE practices play
a crucial role in implementing these protocols, providing structured approaches to develop and
maintain associated SDKs [266], client libraries [28, 105], and server components [246, 339], while
ensuring code quality, reliability, and scalability. In summary, from infrastructure development and
data/model management to deployment and inference acceleration, SE methodologies and tools
continue to shape the rapid evolution and widespread adoption of LLMs.

Despite these advancements, there are unique SE challenges for LLM development. High compu-
tational costs [311, 327], non-deterministic testing [324], and continuous model updates in dynamic
environments [236] demand a re-evaluation of traditional SE practices. Traditional MLOps method-
ologies, initially designed for smaller-scale machine learning (ML) models, are no longer well-suited
for LLMs, necessitating large language model operations (LLMOps) [59]. Furthermore, LLMs devi-
ate from traditional software paradigms: unlike traditional programs that produce deterministic
outputs, LLMs generate responses probabilistically due to their neural network-based reasoning
mechanisms. Additionally, their complex architectures and large scale lead to their outputs being
challenging to explain, making interpretability and debugging far more difficult than in traditional
software systems. These factors highlight the need for engineering solutions to address LLMs’
inherent unpredictability, lack of transparency, and unique operational constraints.

However, we found that extensive research has explored LLM capabilities [126, 380, 471], while
systematic investigations from an SE perspective are still lacking. To address this gap, we present
the first comprehensive study of the SE challenges encountered throughout the LLM
development lifecycle and outline future research directions. Specifically, we categorize the
LLM development lifecycle into six key phases: requirements engineering (RE), dataset construction,
model development and enhancement, testing and evaluation, deployment and operations, and
maintenance and evolution. For each phase, we analyze the current research status to identify key
challenges and propose potential future research directions from an SE perspective.

In summary, our primary contributions are:

e Our work is the first to investigate the role of SE in the development of LLMs, filling the gap
in current research.

o We divide the LLM development lifecycle into six phases and systematically analyze the
scope and significance of SE for LLMs.

e We analyze the latest research on LLMs, identify current challenges, and propose correspond-
ing future research directions.

The remainder of this paper is structured as follows: In §2, we introduce the scope and significance
of SE for LLMs. We then analyze various aspects of LLM development, covering RE (§3), dataset
construction (§4), development and enhancement (§5), testing and evaluation (§6), deployment and
operations (§7), and maintenance and evolution (§8), as illustrated in Figure 1. Finally, we introduce
the related work in §9 and conclude the paper in §10.
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Fig. 1. Phase Organization Overview for the LLM Development Lifecycle.

2 SCOPE AND SIGNIFICANCE

In this section, we introduce the scope of SE for LLMs in §2.1 and its significance in §2.2.

2.1 Scope

As summarized in Table 1, we can see that LLMs share similarities with traditional software while
also exhibiting differences. Unlike traditional software, LLMs are built upon neural network archi-
tectures, resulting in non-deterministic outputs for identical inputs. Additionally, they differ from
traditional software in terms of executability and testing methodologies. Despite these differences,
LLMs retain many characteristics of traditional software. Given these hybrid characteristics, SE
methodologies can be applied to enhance LLM in phases such as development, deployment, and
maintenance. To systematically investigate this intersection, we explore how SE methodologies
support various phases of the LLM development lifecycle, which consists of the phases illustrated
in Figure 2:

o RE. The initial phase of RE for LLMs involves identifying specific performance metrics
(e.g., accuracy, latency, energy consumption) and functional capabilities (e.g., reasoning,
multimodal understanding) that the model is expected to possess, which is typically followed
by a systematic process of requirement refinement, feasibility analysis, and validation to
ensure that the specified goals are both realistic and implementable.

e Dataset construction. Once requirements are established, vast datasets must be prepared
for subsequent pre-training and fine-tuning. The construction of datasets involves data
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Fig. 2. Detailed Activity Breakdown for the LLM Development Lifecycle.

collection and processing to produce high-quality and secure datasets, as the dataset’s quality
significantly impacts model performance [220]. Harmful data can lead to unintended biases
or malicious content generation.

Development and enhancement. The development of LLMs generally comprises two key
stages: pre-training and fine-tuning. Building an LLM from scratch entails designing and
implementing foundational architectures (e.g., Transformers) and performing large-scale
training, which is a highly complex and resource-intensive engineering undertaking. Fortu-
nately, open-source development frameworks facilitate this process. For example, Hugging
Face Transformers [105] facilitates model pre-training and fine-tuning, making it a main-
stream tool for LLM development. After development, models can undergo further training
to strengthen specific capabilities. Additionally, they can be integrated with tools to evolve
into more advanced LLM agents.

Testing and evaluation. Evaluating an LLM requires comprehensive and systematic testing
to assess its diverse capabilities across different tasks and scenarios. However, due to the
inherent complexity of LLMs and their non-deterministic outputs, traditional software testing
methodologies are often not suitable. When evaluating a model, it is essential to consider
not only basic performance measures but also practical challenges, such as hallucinations,
inconsistent outputs, context sensitivity, and other factors that may impact its reliability.
Therefore, further research is needed to improve evaluation methods for LLMs.
Deployment and operations. Once validated, an LLM can be deployed across various
application scenarios. Some models are hosted in cloud environments and accessed via APIs
(e.g., GPT-4.5 [267], Claude-3.7-Sonnet [13]), while others are deployed on edge devices or
within hybrid edge—cloud setups to achieve low-latency and resource-efficient inference.
However, this diversity in deployment environments introduces new challenges, ranging
from scalability and reliability to resource allocation and system integration. Addressing these

, Vol. 1, No. 1, Article . Publication date: July 2025.



Software Engineering for Large Language Models: Research Status, Challenges and the Road Ahead 5

Table 1. Comparison of Characteristics Between Traditional Software and LLM.

Characteristic | Traditional Software LLM Similarity
Determinism | Producing consistent outputs for the same | Generating probabilistic outputs with inher- Low
inputs. ent variation.

Executability | Executing based on explicit, defined logic. |Processing through neural inference with| Medium
limited transparency.
Maintainability | Maintaining through code modifications and | Improving via fine-tuning, retraining, or data High

debugging. augmentation.

Reusability Reusing code components across different | Adapting pre-trained models for various High
projects. tasks.

Testability Supporting systematic unit and integration | Requiring output-based evaluation with un-| Medium
testing. certainty tolerance.

Scalability Expanding through modular design princi-| Scaling via MoE, LoRA, RAG, and parameter-|  High
ples. efficient methods.

Deployability | Requiring platform-specific deployment ap-| Functioning across platforms with similar High
proaches. infrastructure needs.

issues requires strong support from SE practices, such as automated deployment pipelines,
environment-specific optimizations, and real-time monitoring systems.

e Maintenance and evolution. During operation, LLMs require substantial computational
resources and may encounter issues such as performance degradation, inference errors, or
the need for retraining and knowledge updates. Therefore, LLMs also require systematic
maintenance, bringing additional challenges beyond those of traditional software systems.

From this lifecycle perspective, it is evident that SE methodologies are deeply integrated into
the construction, deployment, and utilization of LLMs. In dataset construction, specialized tools
facilitate data cleaning and synthesis. Model development relies heavily on existing frameworks,
while model enhancement often involves integrating LLMs with external tools to extend their
functionality. Furthermore, testing, evaluation, and deployment require novel approaches distinct
from traditional SE practices due to challenges such as debugging difficulties, output variability,
and high computational demands. Beyond engineering complexities, LLMs introduce additional
security and ethical concerns. They are vulnerable to adversarial threats, including data poisoning
and prompt injection attacks, and may perpetuate biases inherent in their training data. Addressing
these issues necessitates SE techniques. Overall, SE in LLMs aims to support structured and
efficient development across the full lifecycle—from requirements engineering and dataset
construction to model deployment and maintenance—while also tackling concerns such
as security, ethical responsibilities, and regulatory compliance.

2.2 Significance

LLMs are hard to understand because they have very complex structures and rely heavily on
neural networks to make decisions. This lack of explanation makes it difficult to optimize, test, and
maintain these models over time. They also introduce new security and privacy issues that are
different from those in traditional software. As LLM applications expand across various domains
and industries, these risks become increasingly critical. To address these issues, we require robust
safety measures and transparent development processes. Given these challenges, the application
of SE methodologies can help ensure that LLMs are built, deployed, and maintained reliably and
responsibly while addressing associated security, ethical, and regulatory concerns.

2.2.1 SE for LLM Development. SE provides systematic and automated tools and methodologies to
support the development of LLM, significantly enhancing both efficiency and reliability. Due to
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the massive scale of LLMs and their long training cycles, manually managing parameters, datasets,
and code versions is complex and error-prone. SE methodologies, such as LLMOps pipelines,
automated hyperparameter management tools, and model version control systems (e.g., Weights &
Biases [373]), facilitate automation and standardization in the model development phase. These
tools reduce the likelihood of human error and enhance reproducibility.

Beyond automation, LLM development presents challenges that differ from traditional SE, such as
stability issues during pre-training [337] and catastrophic forgetting during fine-tuning [179]. These
issues can be mitigated through real-time training monitoring and content-detection techniques.
Additionally, SE methodologies help manage the complexities introduced by parameter-efficient
fine-tuning (PEFT). For example, when integrating adapter layers [161] or Low-Rank Adaptation
(LoRA) [118], it is critical to ensure effective management, maintain compatibility between multiple
tasks, and preserve performance stability. The principles of SE, such as modular design and contin-
uous integration (e.g., automated adapter testing and parameter compatibility verification), provide
structured solutions for efficiently managing and securely applying these fine-tuning techniques.

Furthermore, SE plays an essential role in model versioning and iterative upgrades. Automated
tools that compare different model versions help prevent performance degradation and functionality
loss, enabling smoother and more reliable updates. Thus, beyond enhancing development efficiency,
SE methodologies also help address engineering challenges unique to LLMs, facilitating their
continuous improvement and large-scale deployment.

2.2.2 SE for LLM Deployment. SE plays a crucial role in the deployment of LLMs by enabling
efficient model compression [423] and automated deployment tools (e.g., Hugging Face Inference
Endpoints [77]). While LLMs offer superior performance, their substantial computational demands
pose significant challenges for deployment in resource-constrained devices, such as mobile de-
vices and IoT edge devices [58]. SE addresses these challenges by advancing model compression
techniques, including quantization [30], knowledge distillation (KD) [465], and pruning [448], as
well as adapter-based approaches such as LoRA [445] and Prefix-Tuning [191], effectively reducing
parameter size and computational cost. For instance, quantization techniques, such as INT8 [56] and
INT4 [201], enable large models to achieve efficient inference on consumer-grade GPUs and even
mobile devices [427], significantly expanding their applicability. Additionally, the development of
modular and standardized LLM service interfaces (e.g., OpenAlI API [268]) allows developers to
seamlessly deploy and transition between models across diverse environments, thereby reducing
system deployment complexity.

Beyond model optimization, SE also enhances LLM deployment through the development of
standardized interaction protocols, such as MCP [14] for structured tool integration and A2A [335]
communication for multi-agent collaboration. These protocols streamline integration with external
APIs, databases, and distributed AI agents while ensuring interoperability and fault tolerance.
Additionally, the development of modular and standardized LLM service interfaces (e.g., OpenAl
API [268]) allows developers to seamlessly deploy and transition between models across diverse
environments, thereby reducing system deployment complexity.

2.2.3 SE for LLM Maintenance. SE methodologies are essential for the long-term maintenance and
evolution of LLMs. Once deployed, LLMs require continuous updates to incorporate new features,
adapt to evolving business needs, and respond to environmental changes. As the number of model
versions grows, managing version compatibility, tracking dataset evolution [269], and ensuring API
stability [234] become critical challenges. SE addresses these challenges through version control
systems for models and datasets, modular architecture designs (e.g., LoRA adapters), and automated
regression testing frameworks (e.g., LLM-specific continuous integration tools), enabling efficient
tracking of model functionality changes and rapid issue resolution. For instance, when releasing
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new versions of the Gemini [99] and LLaMA [9] families, Google and Meta employ rigorous SE
practices to manage version compatibility, maintain API stability, and ensure seamless migration
for downstream users. These engineering-driven maintenance strategies significantly enhance
model evolution efficiency, ensuring consistent and reliable performance while supporting the
sustained deployment of LLMs.

2.2.4 SE for LLM Security. LLMs process vast amounts of sensitive data during inference and
deployment, particularly in API-based services, raising concerns about data leakage and adver-
sarial attacks (e.g., prompt injection [102, 221], backdoor attacks [217]). SE plays a critical role in
establishing systematic security mechanisms, including secure access control, privacy-preserving
techniques (e.g., differential privacy [27], federated learning [425]), and trusted execution environ-
ments (TEE) [249]. For instance, Azure OpenAl Service [246], as an Al service provider, implements
strict role-based access control (RBAC) to ensure that users can only access authorized data and
functionalities. Concurrently, research efforts are exploring the application of differential privacy
in data processing, as demonstrated by Google’s work [170], to prevent sensitive training data from
being exposed during inference. Moreover, in multi-LLMs deployment scenarios, ensuring secure
inference environments through containerization and sandboxing techniques (e.g., Intel SGX [141])
is essential. These approaches isolate user inputs during inference, preventing unauthorized access
and adversarial exploitation, thereby significantly enhancing the security and trustworthiness of
LLM.

3 REQUIREMENTS ENGINEERING

From this chapter onward, we analyze the research status of each phase in the LLM development
lifecycle, identify the challenges, and propose potential future directions. For RE of LLM, the
challenges and potential future directions are shown in Figure 3.

§ 3 Requirements Engineering

§ 3.2 Challenges § 3.3 Road Ahead
Accuracy in Reasonableness in : — - I
Multi-Stakeholder Invol t
( Requirements Definition Requirements Definition ’( utti-Stakeholder Involvemen H Empirical Studies |

Fig. 3. Challenges and Road Ahead in §3 Requirements Engineering.

3.1 Research Status

To the best of our knowledge, research on RE for LLMs remains relatively limited. Due to the strong
natural language processing (NLP) capabilities of LLMs, existing studies primarily focus on leverag-
ing LLMs to support RE tasks, while comparatively fewer efforts investigate RE methodologies for
LLM development itself. This imbalance mirrors a similar trend observed in the broader Al domain.
As noted by Ahmad et al. [8], between 2011 and 2021, only approximately 43 publications explicitly
addressed RE for Al, whereas a substantially larger work explored the use of Al techniques to
enhance RE processes.

However, this imbalance does not imply that RE for LLMs is insignificant. As LLMs are increas-
ingly applied across diverse domains, they encounter distinct requirements based on the specific
demands of different scenarios. It is essential to thoroughly understand these requirements and
tailor the development of LLMs accordingly. Fischer et al. [86] fine-tuned a model based on the
requirements of investigative intelligence, yet their understanding of user requirements was mainly
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derived from prior research. In contrast, Solomon et al. [323] conducted an RE study to investigate
the use of LLMs in digital inquiry processes aimed at enhancing healthcare applications. They
proposed a generalizable RE methodology for LLMs that incorporates both qualitative and quan-
titative analyses. The qualitative analysis involves studying the target population’s background,
including cultural and linguistic factors, while the quantitative analysis utilizes techniques such as
word embeddings and network analysis to construct a semantic framework for the model. Beyond
user research methods, Hassani et al. [117] addressed the requirements of a food company by
fine-tuning LLMs to enhance their ability to classify legal texts related to food safety, incorporating
both food safety system and software requirements. Additionally, Sjostrom et al. [321] proposed
meta-requirements for LLM-based knowledge retrieval tools. Although the methodologies proposed
in these studies are domain-specific and lack general applicability, they underscore the critical role
of RE in LLM development: through rigorous RE, developers can identify the specific functional-
ities and performance requirements needed, ultimately enabling the customization of powerful,
task-specific models.

In addition to the domain-specific requirements for LLMs discussed above, several general
requirements recur across diverse scenarios. These include requirements related to dataset quality,
energy efficiency, user preferences, and model interpretability. Dataset quality is a key factor
influencing the performance of LLMs [220]. Despite its importance, there remains no clear consensus
on which specific quality metrics are most relevant or how they should be applied. As a result,
researchers continue to face difficulties in consistently evaluating and comparing dataset quality
across different tasks and domains. In resource-constrained devices such as edge devices (as
discussed in §7.2), LLMs may meet requirements related to energy consumption and computational
efficiency. User preference requirements are also increasingly prominent, as policies, cultural
values, and ethical standards vary significantly across regions. These contextual factors influence
an acceptable LLM response. Finally, explainability remains a key concern. Since LLMs function
primarily as black boxes, it is often unclear how they arrive at specific outputs. This lack of
transparency raises important questions about the reliability, accuracy, and trustworthiness of their
responses [449].

3.2 Challenges

Even before the emergence of LLMs, the impressive capabilities of Al had already given rise to
misconceptions that Al could address all problems [8]. With the advent of LLMs, these expecta-
tions have grown even further, leading to an increased demand for functional requirements (FRs).
Concurrently, the inherent complexity of LLMs has given rise to a diverse array of non-functional
requirements (NFRs), such as interpretability, robustness, and efficiency. We categorize the key
challenges of RE for LLMs into two dimensions: the accuracy and the reasonableness of requirement
definitions.

Accuracy in requirements definition. Clearly defining requirements, whether FRs or NFRs,
remains a challenging task. For example, Hassani et al. [117] found it difficult to determine which
food safety regulations applied to software requirements, as these laws were not formulated initially
with digital systems or Al integration in mind. Similarly, when defining NFRs such as creativity,
conceptual ambiguity becomes a significant obstacle. Questions such as “What constitutes creativity
in the context of LLMs?”, “Which domains should it be evaluated in?” and “How can it be measured
objectively?” are still far from being resolved [87].

Reasonableness in requirements definition. Beyond accuracy, it is equally essential to
ensure that requirements are reasonable and achievable. Conflicting requirements or unrealistic
expectations often necessitate trade-offs to formulate practical and balanced specifications. For
instance, in edge deployment scenarios involving resource-constrained devices, a certain degree of
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performance degradation is inevitable. So defining acceptable trade-offs, such as how much accuracy
can be sacrificed while maintaining robustness, or how much memory and computing resources
the model is allowed to use, presents a complex challenge. Output consistency is another challenge.
Due to the inherently probabilistic behavior of LLMs, it is often unrealistic to expect identical
outputs for the same input, which calls for more flexible and context-aware approaches to defining
such requirements. Together, these challenges highlight the need for refined RE methodologies
tailored to LLMs—methods that can more accurately and practically define both FRs and NFRs.

3.3 Road Ahead

To address the challenges outlined above, we propose two feasible research directions. First, to
improve the accuracy of requirements definition, we recommend adopting a multi-stakeholder
involvement strategy, which engages users, developers, and domain experts in a collaborative
process to reach consensus on requirements. This approach has been successfully applied in several
specific scenarios. For instance, Solomon et al. [323] collaborated with medical professionals to
validate the accuracy of their analytical framework and established general principles for require-
ment definition in digital healthcare contexts. Similarly, Chakrabarty et al. [24] recruited writers,
volunteers, and domain experts to define LLM creativity, incorporating expert insights along-
side standardized creativity assessment methods such as the Torrance Tests of Creative Thinking
(TTCT) [344]. However, these examples mainly focus on specific, well-defined user groups. In
scenarios involving international or cross-domain user bases, the effectiveness and scalability of
such multi-stakeholder approaches become limited. Therefore, a promising future direction is to in-
vestigate how to more systematically and scientifically incorporate diverse stakeholder perspectives
when defining requirements across broader, more heterogeneous application environments.

Second, to address the challenge of defining reasonable requirements, we advocate for increased
emphasis on empirical studies. Such studies enable a systematic understanding of the trade-offs
involved in LLM deployment by evaluating model performance across diverse scenarios, which
facilitates the establishment of practical, evidence-based requirement boundaries. For example,
Huang et al. [136] conducted an extensive evaluation of LLaMA3 quantization across 1-8 bits
settings, yielding empirical insights into the trade-offs between model performance and memory
efficiency. Nevertheless, such empirical efforts are still relatively limited, highlighting the need for
further research in this direction.

4 DATASET CONSTRUCTION

In the development of LLMs, training datasets, encompassing both pre-training and fine-tuning
corpora, play a crucial role. In this section, we analyze datasets primarily from two critical dimen-
sions: data quality and data security. These aspects not only influence model performance and
generalization but also raise technical and ethical challenges. As shown in Figure 4, by focusing on
our discussion around these two dimensions, we aim to provide a comprehensive perspective on
the construction and utilization of datasets in LLM development.

4.1 Data Quality

4.1.1 Research Status. Data quality directly influences the diversity, relevance, and accuracy of
datasets, which are critical factors in improving LLM performance for specific tasks [220]. Feng
et al. [85] demonstrated a positive correlation between the frequency of causal relationships in
pretraining corpora and LLM performance in causal discovery tasks. Similarly, Rao et al. [293]
proposed a pre-training approach that leverages the mapping between code and test files to enhance
the relevance of training data, thereby improving LLM-generated test cases. As a result, obtaining
high-quality datasets has become a key focus of research.
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Fig. 4. Challenges and Road Ahead in §4 Dataset Construction.

According to the construction method, we broadly categorize current approaches to improving
data quality into two main strategies: (@) manual data labeling and rule-based selection, and (b) LLM-
assisted data construction. Manual methods typically yield high-quality datasets [45, 189,319, 402]
but are labor-intensive and often result in relatively small datasets. While LLM-assisted methods
involve using LLMs to label, synthesize, or filter high-quality data automatically. Due to their strong
performance, LLMs have been extensively employed for data construction [42, 214, 257, 366] to
facilitate large-scale dataset generation through dedicated pipelines or agents. Correspondingly,
there are two primary LLM-based data generation methods: reference-based methods and
collaborative LLM methods. Reference-based methods typically leverage high-quality seed
datasets, strong baseline models, or external knowledge sources as references to guide the generation
of higher-quality datasets. For instance, Gao et al. [94] introduced a teacher-student framework
where an LLM extracts high-quality samples from unlabeled data by comparing them against a
reference dataset. Collaborative LLM methods involve multiple LLMs working together to identify
high-quality datasets. For example, Liu et al. [223] fine-tuned datasets using human expert-created
instructions to produce richer and more precise instruction datasets. Similarly, Huang et al. [132]
employed LLMs to optimize fine-tuning datasets for improved code generation efficiency. Despite
their advantages, these methods share a common limitation: their effectiveness is inherently
constrained by the performance of the LLM itself. If the LLM’s capability is suboptimal, the quality
of the generated datasets is affected [431].

As an essential component of data quality, data diversity has a significant impact on model
generalization and robustness. Thus, it has gained people’s attention. Zhou et al. [464] demonstrated
the presence of long-tail effects in datasets, where LLMs exhibit lower performance on rare data
categories. Traditional approaches, such as Focal Loss [300] and Learning-to-Rank (LTR) [11], have
been proven ineffective in mitigating these issues for LLMs.

Therefore, approaches for enhancing data diversity have been widely studied in recent years,
which can be broadly classified into two categories: (a) preserving diverse samples during data
selection and (b) employing data synthesis techniques. Although real-world data is inherently
diverse [282], its imbalanced distribution poses significant challenges [227], such as minor lan-
guages remaining persistently underrepresented, which causes the related corpus to be significantly
rare [159, 241]. Due to the high cost of manual efforts, researchers often rely on LLMs to select di-
verse data samples automatically. However, their capability to directly assess data diversity remains
limited [273]. Consequently, researchers have turned to data synthesis techniques to enrich under-
represented categories [226]. Also, due to the high costs associated with manual data synthesis [220],
recent efforts have focused on leveraging LLMs for automated data generation [42, 374, 393]. Yuan
et al. [433] applied this method to synthesize biographical texts, reducing biases associated with
occupation and improving dataset balance. Additionally, LLMs can serve as translators, converting
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widely available data from natural languages [466], programming languages [22, 211], or multime-
dia formats [232] into less common languages, programming paradigms, or textual information.
This approach generates rare data types at scale while minimizing human effort. However, due to
inherent biases in LLMs, it may inadvertently introduce biases or errors [68, 397].

4.1.2 Challenges. The findings discussed above highlight several challenges in improving data
quality, which can be categorized into three key aspects:

Limitations of manual dataset construction. Manual data creation is labor-intensive and
inherently constrained in scale. A significant drawback is its time-consuming nature, as tasks such
as dataset cleaning, labeling, and ensuring balanced data distribution require extensive human
effort. Although pipelines and custom rules can assist in data collection and filtering, we still can
not achieve full automation to process data. Furthermore, it is impossible to mitigate biases and
achieve a well-balanced dataset distribution only through rule-based automation. As a result, the
dependence on manual processes limits the speed and scalability of dataset development.

Imbalanced data distribution. Data imbalance is common in both real-world distributions and
training dataset distributions. Different languages [159, 227], geographic regions, time periods [241],
and data sources contribute to this imbalance, which complicates data acquisition and processing.
As a result, imbalanced datasets introduce challenges: (a) The long-tail effect [464], where LLMs
perform poorly on underrepresented data categories. (b) Inherent biases. When sources like social
media dominate datasets, they often carry inherent biases [198]. These biases can harm model
generalization [185] and raise ethical issues [150].

Limitations of LLMs in data synthesis. Despite their advancements, LLMs exhibit inherent
limitations in improving data quality and generating synthetic data [431]. Since many of their
abilities are still not comparable to human experts, fully relying on automation for data filtering,
labeling, and evaluation is often ineffective. For instance, Pang et al. [273] found that LLMs struggle
with accurately assessing data diversity. While LLMs have shown promise in data synthesis, their
inherent biases can result in imbalanced synthetic data distributions [68, 397], further complicating
the challenge of dataset construction.

4.1.3 Road Ahead. To enhance data quality, we propose two potential research directions. Data
pipeline optimization is a promising direction. Specialized data pipelines or agents for collecting
and processing LLM training data have been explored by Ostendorff et al. [269]. Furthermore,
such architectures should incorporate automated tools to efficiently filter or generate target data
based on user configurations. In addition to essential automation tools, LLMs can assist in this
process. However, given the limitations of a single model, leveraging multi-model collaboration and
multimodal data transformation can help overcome these constraints. Furthermore, incorporating
human expert feedback can enhance data quality while mitigating the high costs associated with
manual dataset construction.

At the same time, adaptive data evaluation can further improve data diversity by establishing
robust evaluation mechanisms. Potential approaches include: (a) Dynamic long-tail adaptation,
which adjusts data generation in real time based on distribution patterns to prevent imbalances.
We can incorporate models such as support vector machines (SVMs) or clustering algorithms to
automatically classify data and infer its distribution. However, data distribution detection faces
two main challenges: how to define suitable classification criteria and how to determine the
categories to be used. (b) Multimodal contextual assessment, which utilizes advanced multimodal
translation techniques to generate data across different modalities based on evaluation results. This
method facilitates cross-modal data transformation to enhance data diversity and improve overall
data quality. (c) Bias-aware diversity scoring frameworks. Although LLM-as-a-judger has become
increasingly popular, it remains unsuitable for reliably identifying bias. In the future, we could
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build a clear and practical framework for evaluating bias, including clear categories of bias and
corresponding assessment metrics. Within this framework, LLMs could serve as auxiliary tools
to match outputs with relevant bias categories or similar cases. By analyzing the distribution of
outputs within the same category, it would then be possible to determine whether a particular LLM
response exhibits bias more accurately.

4.2 Data Security

4.2.1 Research Status. As discussed in §4.1, datasets may contain biased or harmful content, making
LLMs susceptible to generating incorrect or unsafe outputs [280]. This issue poses significant risks
in critical domains such as healthcare [10]. One major cause of this problem is data poisoning [144,
148, 398], where adversarially manipulated data is put into training datasets, leading to unintended
behaviors in LLMs. While existing studies [270, 352] have explored methods to mitigate dataset
bias, more advanced techniques are still needed to identify increasingly complex bias patterns.

Beyond biased data, the widespread adoption of LLMs for code generation has raised concerns
regarding malicious code embedded in training datasets, which can lead LLMs to produce security
vulnerabilities [46, 250]. Yan et al. [405] and Liu et al. [216] demonstrated that LLMs can synthesize
vulnerable code capable of evading traditional static analysis tools as well as LLM-based vulnera-
bility detection mechanisms. Although researchers have proposed countermeasures at different
stages, including during code generation [178, 258] and post-generation analysis [401], the issue of
preventing malicious code at the dataset level has received limited attention from researchers.

Additionally, since many LLM training datasets are not publicly disclosed, concerns have
emerged regarding the use of unauthorized data, raising complex intellectual property and le-
gal issues [391, 463]. To address the issue of training data authorization, researchers have explored
membership inference techniques [38, 54, 238, 312] to determine whether a specific dataset was
used in model training. For instance, Shi et al. [312] proposed a method to detect whether a dataset
was incorporated into an LLM’s training data by analyzing whether it was publicly released after the
model’s training period. However, this approach does not infer internal relationships within datasets.
To overcome this limitation, Maini et al. [238] trained a linear model and used information scores to
determine if a dataset was part of the model’s training set. However, this method is still not precise
enough. Another technique to address data authorization is digital watermarking [47, 108, 272, 371],
which embeds markers to trace unauthorized usage and ensure data provenance. However, due to
the current limitations of watermarking technology, such as requiring black box access rights [370]
or being vulnerable to attacks [274], it still needs to be further improved.

4.2.2 Challenges. The aforementioned research findings highlight two key challenges in ensuring
the security of training data: training data poisoning and training data authorization. Each
aspect presents unique risks and requires targeted mitigation strategies to address them.

Training data poisoning. LLM training relies on large-scale datasets, making it highly suscepti-
ble to data poisoning attacks. Adversaries can deliberately inject malicious information, misleading
content, or backdoor data into training sets to manipulate model behavior or even exert control
over its generated outputs. These attacks include backdoor attacks, knowledge contamination,
ethical and security pollution, and steganographic attacks. Even if a training dataset contains
only a small fraction of malicious code, the trained LLM may still generate vulnerable code with
high probability [280]. However, defending against data poisoning remains highly challenging
due to LLMs’ reliance on extensive, unverifiable datasets. While techniques such as poisoned data
detection [17] and secure prompt engineering [413, 441, 459] have been developed to mitigate the
impact of data poisoning, limited research has focused on systematically detecting and filtering
malicious data within training datasets [51].
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Training data authorization. Training data is often sourced from open datasets, web-scraped
content, and user-provided data. However, not all data is explicitly authorized for commercial use
or model training, posing legal risks related to copyright infringement, privacy compliance, and
platform policies. Currently, membership inference and digital watermarking techniques are the
primary methods used to address data authorization concerns. However, these techniques have their
limitations. For example, some methods rely on disclosure time information or require black-box
access to the model, which makes data verification less accurate and limits their applicability.

4.2.3 Road Ahead. Currently, no fully effective solution exists for mitigating training data poison-
ing [51], but several promising directions are worth further exploration. One potential approach is
data source filtering, which involves establishing trusted data sources and exclusively collecting
data from these sources. When combined with data provenance techniques to track the origin and
modification history of data, this method enhances the traceability of datasets. However, it faces
notable challenges, including ensuring the reliability of trusted sources and the limited availability
of high-quality training data. Another promising direction is the advancement of data detection
techniques. While some studies [46, 88, 148] have been conducted, more precise detection methods
are required to identify malicious data, biased content, and trigger patterns. To address this, a
data auditing and risk assessment platform could be developed, integrating automated tools for
real-time or periodic security audits to identify data quality and security issues. Given LLMs’ strong
analytical capabilities and their successful applications across various domains [154], it is viable
to leverage them for finer-grained detection. Specifically, a real-time anomaly detection system
powered by LLM-assisted analysis could be designed to automatically identify and block anomalous
data before it enters the training pipeline, thereby minimizing its potential negative impact.

To address data authorization concerns, integrating data provenance with blockchain technology
represents a potential solution. However, storing large-scale datasets on-chain remains a significant
challenge. Even if only dataset hashes are recorded on-chain, this approach becomes significantly
less effective when there is little to no information available about the datasets used to train the
LLMs. Thus, effective membership inference is essential. Although recent studies [239, 244]
have made notable progress, they fall short of addressing deeper, structural challenges that remain
at the core of the problem. The method proposed by Maini et al. [239] requires independently
and identically distributed (IID) datasets, while the approach in Meeus et al. [244] struggles with
small-scale inference and its accuracy remains limited. Future research should focus on enhancing
membership inference methods to achieve higher accuracy and finer granularity.

5 DEVELOPMENT AND ENHANCEMENT

The development of LLMs has revolutionized the field of AL. However, it also introduces unique
challenges from an SE perspective. Model enhancement aims to improve a model’s capabilities,
performance, and reliability. Notably, since models can be enhanced during development through
fine-tuning or continual training, a strong coupling exists between the development and enhance-
ment phases. Due to this interdependence, we explore the critical challenges associated with both
LLM development and enhancement, focusing on three primary phases of model development:
pre-training, fine-tuning, and model integration, as shown in Figure 5. We first analyze existing
limitations and emerging solutions, followed by a discussion of key techniques: model compression
and PEFT.

5.1 Pre-Training

5.1.1 Research Status. Pre-training is the foundation of LLM development, yet it faces challenges
in terms of scale, resource demands, and engineering complexity. Ensuring and enhancing the
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effectiveness of pre-training has been a long-standing research focus, with efforts directed towards
optimizing training datasets, refining training methodologies, and improving computational effi-
ciency [197, 342]. SE plays a critical role in advancing LLM pre-training, contributing to areas such
as automating training pipelines [119, 229], optimizing training architectures [255], enhancing
stability and security [34, 248, 368, 387], and reducing energy consumption [15].

As models continue to grow in size and complexity, maintaining training stability has become
an increasingly critical challenge [337], particularly in ensuring smooth convergence. Existing
research primarily focuses on mitigating gradient explosion [368] and gradient vanishing [248],
as well as optimizing learning rates [34, 387], all of which aim to regulate parameter distributions
and transformations during training to enhance stability. For instance, Chung et al. [43] controlled
output layer embedding variance to prevent gradient explosion, while Agarwal et al. [3] and Woo
et al. [377] improved stability by selectively discarding specific backpropagation steps. Nishida
et al. [261] attributed loss spikes and convergence failures to uneven parameter distributions
and introduced weight scaling as reparameterization (WeSaR) to normalize parameter norms for
stable training. Similarly, Wortsman et al. [378] proposed a hybrid AdamW-Adafactor optimizer
to mitigate loss spikes. Moreover, parameter precision also impacts training stability. DeepSeek-
V3 [203] preserved the original precision of specific model components to ensure stable training.

The exponential growth in model sizes has further intensified computational resource con-
straints [16, 303, 310, 382, 394]. Training SOTA LLMs requires extensive computational infrastruc-
ture, which costs potentially reaching millions of dollars per training run. One commonly adopted
approach to alleviate this challenge is model compression [470], which reduces model size to lower
resource demands. However, these methods often result in some degree of performance degradation.
We will discuss model compression techniques in detail in §5.4.

5.1.2  Challenges. The research mentioned above highlights two key challenges in pre-training:
Training stability. Although various techniques have been proposed to improve training
stability, most approaches rely on heuristics rather than systematic frameworks. For instance,
learning rate (LR) warm-up is commonly employed to mitigate gradient explosion and enhance
stability. However, there is currently no general model for evaluating its effectiveness across
different LLM architectures and training setups [390]. In practice, parameter settings are often
chosen through trial and error, based on the needs of individual cases [109, 140]. Moreover, as
model sizes continue to increase, the training process becomes increasingly complex and difficult
to regulate; therefore, it is necessary to conduct systematic research into training stability.
Computational resource management. As LLMs continue to scale, managing computational
resources has become a major challenge—training a single large model can cost millions of dollars
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in hardware, energy, and time [67, 395]. This economic burden limits the capability of smaller
research teams and companies with constrained resources to develop proprietary LLMs, limiting
opportunities for smaller research teams to innovate and allowing a few major proprietary models
to maintain their leading positions in the field. Lowering training costs would make it easier for
smaller labs and open-source communities to build and improve their models, helping to reduce the
dominance of a few major players. In the industry, the cost-efficient training approach adopted in
DeepSeek-V3 [203] has already garnered significant attention, further facilitating the development
of more accessible and cost-effective models.

5.1.3 Road Ahead. To address these challenges, potential solutions can be explored from two key
directions: stable training and efficient training.

Stable training. One of the primary causes of training failures in LLMs lies in internal parameter
updates. As discussed in §5.1.1, most existing approaches rely on heuristic adjustments rather than
rigorous theoretical foundations. Zucchet et al. [476] explored optimization challenges in RNNs and
identified fundamental causes of gradient explosion. Similarly, achieving a deeper theoretical
understanding of training dynamics in LLMs is essential for identifying key instability factors,
such as the underlying triggers of loss spikes. Beyond theoretical advancements, the development
of real-time monitoring and analysis tools for LLM training could enable the detection and
prediction of anomalous behaviors by tracking stability-related metrics. Additionally, it is important
to design user-friendly visualization tools and interactive interfaces that help researchers interpret
model behavior and monitor the training process more effectively.

Efficient training. Due to the high computational costs associated with pre-training, improving
LLM efficiency is a crucial research direction. GPUs used for model training are extremely costly,
which makes it essential to have tools that can monitor usage in real time and adjust workloads
to avoid waste. These tools should minimize GPU usage without increasing training time
or compromising model performance, thereby significantly reducing overall computational
costs. Additionally, model growth techniques from ML in which smaller models are leveraged to
accelerate the training of larger ones hold promise for improving efficiency. While this approach
has not yet been widely adopted in LLM pre-training, Du et al. [65] conducted an empirical study
providing insights into its potential application. Therefore, it is considered valuable to explore
the application of model growth techniques in LLM development in the future.

5.2 Fine-Tuning

5.2.1 Research Status. Fine-tuning enables pre-trained LLMs to adapt to specific tasks while bal-
ancing adaptation, knowledge retention, computational efficiency, and deployment constraints.
However, it presents several challenges, including PEFT (will be discussed in detail in §5.5), cata-
strophic forgetting prevention, and cross-domain generalization.

Fine-tuning has been widely employed to enhance model performance across diverse tasks [285,
306]. While fine-tuned models often exhibit significant improvements in individual tasks, effectively
fine-tuning LLMs for multi-task scenarios remains a major challenge [204]. Existing approaches
frequently struggle with task interference, optimal resource allocation across different objectives,
and maintaining consistent performance across diverse domains [194, 341, 385, 388]. To address
these challenges, researchers have explored techniques such as LoRA [6, 231] and MoE [163, 414,
469], further enhanced by optimization techniques [174, 355] and resource allocation strategies [215,
264]. However, one major challenge is improving task-specific performance while still preserving
the model’s general ability to work across different domains.

Additionally, fine-tuning introduces the risk of catastrophic forgetting, wherein models lose
previously acquired knowledge during adaptation. Recent studies suggest that what appears to
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be forgetting may be caused by the model becoming less aligned with the task, rather than truly
losing the knowledge it learned [456]. However, the underlying causes are still unclear [179]. This
problem becomes even more noticeable when the model needs to be updated regularly [111] or
adapted to new domains [205], as it often struggles to retain its original capabilities while learning
new ones.

LoRA has demonstrated potential in mitigating catastrophic forgetting and has achieved notable
success [64, 259, 297]. However, recent studies indicate that LoRA still struggles with certain lim-
itations, such as instruction-following constraints [146] and scaling challenges [155]. Continual
learning approaches have been proposed to enable iterative knowledge acquisition while preventing
forgetting [80, 325]. Nevertheless, research has shown that continual learning can lead to signifi-
cant performance degradation after repeated training cycles [134, 176, 190]. Furthermore, these
approaches are not universally applicable across different modalities in multimodal LLMs [437],
underscoring the need for modality-specific fine-tuning solutions.

5.2.2 Challenges. Beyond PEFT, which will be discussed in §5.5, we identify two key challenges in
fine-tuning.

Multi-task and cross-domain adaptation. Fine-tuning LLMs for multiple tasks or domains
simultaneously presents several challenges [204], including task interference, optimal resource allo-
cation, and maintaining consistent performance across diverse domains. While existing approaches
such as LoRA and MoE have demonstrated effectiveness in mitigating these issues, there are still
further improvements needed in areas such as training efficiency [364], model generalization [194],
and system overhead during task switching [385].

Catastrophic forgetting. The underlying mechanisms behind catastrophic forgetting in LLMs
remain largely unexplored, and no highly effective solutions have been developed to address this
issue comprehensively. Although existing techniques, such as LoRA and continual learning, can
help mitigate forgetting, they often come at the expense of performance degradation or the loss
of other learned knowledge. Furthermore, these approaches are ineffective in multimodal models,
which highlights the importance of developing fine-tuning methods tailored to each modality.

5.2.3 Road Ahead. The challenges of catastrophic forgetting and multi-task, multi-domain adapta-
tion underscore the lack of universality in current fine-tuning methods, which have yet to achieve
the goal of adapting to diverse tasks [285]. Future fine-tuning approaches should aim to enable
both effective multi-task adaptation and mitigate catastrophic forgetting.

For multi-task and multi-domain adaptation, a promising direction is to integrate various
fine-tuning techniques, such as LoRA, with MoE, quantization, and resource optimization strategies,
forming a hybrid fine-tuning architecture. Specifically, designing an architecture capable of
real-time monitoring of task interference could enable the rapid detection of adverse transfer
effects, allowing for automated adjustments in task allocation and fine-tuning strategies. For
instance, dynamically allocating additional resources to tasks with higher interference could
mitigate performance degradation. This approach has the potential to minimize or eliminate
task interference while preserving model generalization and maintaining inference efficiency. In
addition to combining different fine-tuning methods, a modular fine-tuning architecture could
be designed to make it easier for LLMser to switch between, plug in, or combine modules tailored
to specific tasks or domains. Such an approach would reduce the coupling between fine-tuning
techniques, thereby lowering maintenance costs and improving adaptability. Notably, this idea
aligns with the design principles of industrial MoE and LoRA modules, which primarily focus
on enhancing LLM performance. Recent studies on MoE and LoRA [156, 183, 403] have begun
exploring intelligent scheduling mechanisms to support multi-task adaptation further.
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For catastrophic forgetting mitigation, an essential research direction is the development of
comprehensive methods to assess the extent and content of knowledge forgotten by LLMs. Such
evaluations are crucial for facilitating targeted recovery of forgotten information and improving
model retention strategies. Additionally, knowledge retention techniques tailored for multimodal
models are urgently needed, as traditional PEFT and continual learning methods have demonstrated
limited effectiveness in this context. Future research could explore memory-augmented models
that leverage external memory mechanisms, such as knowledge graphs and vector databases, to
reduce reliance on parameter-based memory. Furthermore, inspired by LR warm-up strategies,
progressive adaptation [124] could be investigated as a gradual fine-tuning approach to prevent
large learning rates from causing gradient explosion or vanishing, thereby mitigating the effects of
forgetting. Another significant challenge is that catastrophic forgetting often remains undetected
until post-fine-tuning evaluation, making real-time performance assessment difficult. This lack
of visibility underscores the need for diagnostic and visualization tools specifically designed
to monitor catastrophic forgetting. Future research could focus on building a diagnostic and
visualization platform that helps developers track and understand how well knowledge is retained
during the fine-tuning process. As Zheng et al. [456] point out, catastrophic forgetting does not
mean that the model has truly lost the knowledge. With such a platform, developers can detect signs
of forgetting on time, roll back to a previous version of the model, and adjust the training strategy
for retraining. In addition, automated rehearsal mechanisms or adaptive prompting strategies [134]
could also be integrated to proactively reduce the risk of forgetting.

5.3 Model Integration

5.3.1 Research Status. Unlike model development and enhancement through pre-training and
fine-tuning, alternative approaches such as expanding a model’s knowledge base via Retrieval-
Augmented Generation (RAG) or knowledge graph techniques, developing multimodal models, and
enabling multi-model collaboration focus on integrating external models or tools with base models,
known as LLM-based agents, to accomplish more complex tasks. Collectively, we refer to these
approaches as model integration, wherein SE plays a crucial role in multiple aspects, including
transforming information into prompts, coordinating interactions between models or with external
tools, and optimizing routing decisions.

In LLM integration, the inclusion of RAG, knowledge graphs, additional sensors, and multimodal
base models introduces a diverse and extensive range of information sources [113]. Consequently,
effectively transforming this information into prompts suitable for LLM task execution is impor-
tant. Current research primarily focuses on preprocessing external information before generating
prompts. For instance, Li et al. [192] proposed a method for summarizing contextual information be-
fore submitting it to the LLM. Similarly, in RAG, prompts are generated by combining retrieval-based
methods with knowledge graphs to provide more task-relevant contextual knowledge [209, 242, 399].
Moreover, tools such as EasyTool [434] consolidate diverse tool-related information into unified
interfaces for LLMs to process. However, these methods remain constrained by the limitations of
the context window and the inherent capabilities of LLMs, preventing fundamental optimization.
To address this issue, Koh et al. [164] proposed a more foundational approach, mapping textual
information into the embedding space of vision models to enhance image representation. Never-
theless, this approach is still limited by the constraints of the model’s embedding space. Therefore,
to make real progress, new strategies are needed that go beyond the current methods.

Given the emergence of recent protocols such as A2A, MCP, the Agent Communication Pro-
tocol (ACP)[4], and the Agent Network Protocol (ANP)[5], which all emphasize communication
and collaboration among models and tools, it is evident that the future focus of model integration
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lies in multi-model, multimodal processing and interactive cooperation with external tools. Ac-
cordingly, we highlight three representative forms of model integration: multimodal models,
multi-model collaboration, and LLM-based agents. Multimodal models are capable of receiving
inputs from various modalities and producing outputs across multiple modalities. Multi-model
collaboration refers to leveraging cooperation, competition, or cascading among different models
to accomplish complex reasoning tasks. LLM-based agents, in contrast, are built upon LLMs as
the central reasoning component, and are capable of planning, decision-making, and executing
tasks by interacting with external tools and knowledge sources. As illustrated in Figure 6, although
these three paradigms differ in focus, there is overlap among them. For instance, in multi-model
collaboration, complex tasks can be decomposed and distributed across models via multi-agent
systems [82]. LLM-based agents can integrate multimodal models to mitigate hallucinations and
enhance reasoning capabilities [145], or dynamically select from a pool of multimodal models of
varying types and sizes to suit different task requirements [440]. For clarity, we analyze these three
integration paradigms separately, focusing on their unique characteristics and technical challenges,
while leaving their areas of overlap outside the scope of this discussion.

LLM-based agents with
multimodal agents

HE S HEEE Rl g Multimodal Models

Multi-model collaboration
with multimodal models

Multi-model collaboration
through multi-agent systems

Multi-model Collaboration

Fig. 6. Overlap between LLM-based agents, multimodal models, and multi-model collaboration.

For multimodal models, a fundamental challenge lies in achieving effective alignment across
different modalities (e.g., text, vision, and audio) [35]. This challenge involves several key aspects.
First, semantic consistency ensures that meaning is preserved across modalities [187, 367]. Second,
representation alignment focuses on aligning embeddings and features from different modalities to
support better understanding and knowledge sharing [173, 305]. Third, cross-modal understanding
aims to bridge the gaps between modalities, enabling smoother knowledge transfer and more
effective interaction [139]. Liu et al. [207] highlight that failure to address these issues can result
in severe performance degradation or hallucination effects. Furthermore, these challenges extend
across various stages of multimodal model development, including data processing [196, 460] and
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pre-training strategies [195], both of which face significant hurdles. Closing these gaps is crucial
for developing multimodal models that can perform effectively across a broad range of real-world
tasks.

In contrast, multi-model collaboration has been explored as a means of enhancing reasoning
capabilities [213, 278, 309]. However, differences in what models can do, how they respond, and
the values they reflect make it necessary to align them carefully to ensure they can work well
together. Without such alignment, issues such as hallucinations may mislead reasoning processes,
potentially resulting in incorrect or failed outcomes [83, 84]. Although several approaches have
been proposed to mitigate these challenges, such as fine-tuning [396], uncertainty estimation [428],
and probing other LLMs to address knowledge gaps [83], there still lacks enough research in
this area. Another significant challenge lies in the coordination of multi-model systems, which
includes managing workflows, optimizing inter-model communication, and efficiently allocating
computational resources. While novel routing strategies have been introduced, such as MARS [129],
TO-Router [330], Eagle [455], and C2ZMAB-V [49], these approaches often fail to consider critical
real-world constraints, such as computational resources and network bandwidth. In practice, these
resource limitations introduce additional complexities [279], which will be further discussed in §7.

Another common integration form is the LLM-based agent. Leveraging the powerful reasoning
and decision-making capabilities of LLMs, LLM-based agents can autonomously perceive their
environment, adapt to changes, and take actions when interacting with external systems, such
as web services, databases, or local files. As a result, they have been widely applied in different
areas [33, 133, 165, 237, 356]. Currently, LLM-based agent frameworks typically consist of four core
modules: plan, perception, memory, and action [39, 210, 230, 383]. Specifically, the plan module
is responsible for strategy formulation and execution planning, the perception module handles
environmental input sensing and its transformation into representations that LLMs can understand,
the memory module stores historical information to support context retrieval and ensure coherent
decision-making, and the action module executes specific operations and tool invocations.

Although single-agent systems have shown impressive capabilities, they often struggle to handle
complex tasks that require diverse skills, parallel processing, or coordinated decision-making [210].
To address these challenges and scale to more sophisticated problems, multi-agent systems (MAS)
are explored, enabling division of labor and collaborative problem-solving by coordinating the
efforts of multiple autonomous agents [39, 230], which requires robust agent-to-agent commu-
nication and collaboration mechanisms between the agents themselves. Protocols designed for
agent-to-agent communication facilitate such inter-agent collaboration, enabling agents to discover
each other’s capabilities, delegate tasks, and exchange information. For instance, the A2A [335]
specifically supports peer-like task outsourcing and dynamic interaction between autonomous
agents, often within enterprise-scale workflows [71]. Beyond inter-agent communication, a funda-
mental requirement for both single and multi-agent systems is effective interaction with diverse
external tools and resources for task execution and data retrieval. However, it is a significant
challenge to standardize this agent-to-external system interaction. Additionally, existing tool inte-
gration methods are often fragmented, relying on complex manual wiring and platform-specific
approaches that limit scalability and interoperability [39, 127, 230]. To address this fragmentation
and standardize Al model-to-external system interaction, the MCP [14] introduces a unified com-
munication framework for LLMs to interact with external tools and resources, which simplifies
tool invocation and enhances interoperability across diverse systems. Although introduced only
recently, MCP has gained significant attention [127, 317]. It enables LLM-based agents to interact
with external tools and systems more easily through a unified interface, facilitating the completion
of complex tasks more efficiently.
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Another critical issue in model integration that has garnered significant attention is security. Due
to the diverse and complex nature of real-world scenarios, even LLMs that have undergone safety
alignment remain vulnerable to prompt injection attacks [102, 221]. Suo et al. [334] proposed Signed-
Prompt as a defense against sensitive prompt injection attacks. However, Liu et al. [217] identified
an attack technique that exploits prompts to achieve remote code execution (RCE). Similarly, Evertz
et al. [73] outlined two methods for extracting confidential information through malicious prompts:
(a) inducing the model to leak data by disguising malicious input as legitimate user queries and (b)
injecting malicious data into external tools to hijack the model’s behavior, leading it to execute
unsafe operations. These examples demonstrate the vulnerability of prompt environments in model
integration settings, as observed by Zhan et al. [438]. Although various studies have proposed
effective defense mechanisms, including benchmarks [222, 286, 438], fine-tuning [286], prompt
filtering [281], and LLM-based defenses [286, 458], recent studies [55, 138, 172, 214, 276] highlight
their limitations, which underscores the need for further investigation into emerging attack vectors
and the development of more robust security strategies to safeguard LLMs in the real world.

In addition to direct attacks targeting the models themselves, the communication protocols
facilitating model integration and agent interaction can also become potential entry points for
security threats. Protocols such as the MCP (for agent-tool interaction), ACP, A2A, and ANP (for
inter-agent communication in various contexts) each introduce specific security risks throughout
their lifecycle. For instance, MCP servers, which mediate agent access to external tools, face
risks including code injection, backdoor implantation, and installer spoofing, which may lead to
information leakage or the incorrect execution of actions by LLMs [127]. Radosevich et al. [292]
identified that MCP servers are particularly vulnerable to malicious code execution (MCE), remote
access control (RAC), and credential theft (CT). Protocols like A2A, ACP, and ANP, designed for
communication between agents, face distinct challenges such as identity spoofing (e.g., Agent Card
spoofing in A2A, DID spoofing in ANP), message tampering, unauthorized capability injection,
and session hijacking, impacting secure task delegation and coordination [71]. To mitigate these
protocol-specific vulnerabilities, research is exploring various defense mechanisms tailored to each
protocol’s interaction model and lifecycle, including authentication, auditing, secure configuration
strategies based on theoretical threat analysis, cryptographic signing of manifests and messages,
and robust access control mechanisms [71, 168, 254]. Although research on the security of these
emerging protocols remains limited, existing studies demonstrate that their security issues should
not be overlooked, and future work should place greater emphasis on addressing these challenges
across the diverse landscape of agent interoperability protocols.

5.3.2  Challenges. We categorize the key challenges in model integration into four main aspects:
prompt transformation, alignment in multimodal systems, multi-model collaboration,
and security concerns.

Prompt transformation. In both multimodal settings and LLM integration with external models
and tools, prompts are no longer limited to a single information source. As user input environments
become increasingly complex, inputs may include images, audio, text, and so on, which indicates
they need to be converted into a common modality (e.g., image-to-audio transformation). Similarly,
RAG and knowledge graphs contain vast amounts of structured and unstructured data, requiring
the extraction of relevant content for prompt construction. Consequently, transforming diverse
information into an input format that LLMs can effectively process is crucial.

Multimodal alignment. Achieving effective alignment across different modalities (e.g., text,
vision, and audio) remains a fundamental challenge in multimodal models. Failure to accurately
transform and synchronize information between modalities can lead to severe performance degra-
dation or hallucination effects. This alignment process requires not only semantic consistency but
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also the synchronization of internal representation spaces to facilitate cross-modal understanding.
While significant research has been conducted on aligning visual and textual information, studies
on other data types, such as sensor data and time-series information, remain underexplored.

Multi-model collaboration. The challenges associated with multi-model collaboration can be
broadly categorized into two key aspects. First, differences in model capabilities, preferences, and
underlying values must be aligned. Otherwise, discrepancies in understanding may lead to reason-
ing errors during collaboration. Second, coordination challenges arise in workflow management,
inter-model communication, and the allocation of computational resources. For instance, assigning
simpler tasks to less resource-intensive models while reserving complex tasks for more powerful
models can improve inference efficiency and reduce computational costs. However, real-world im-
plementations involve additional complexities, such as quantifying task difficulty, designing model
selection strategies, and managing concurrent execution across models. Addressing these challenges
requires significant advancements in multi-model coordination and scheduling mechanisms.

Multi-agent system scaling. During the scaling of multi-agent systems (MAS), two primary
challenges arise: the rapid increase in computational resource demands and the significant growth
in complexity of communication and coordination. When the number of agents grows, the system
becomes more resource-intensive. This is because even a single LLM consumes a lot of resources, and
adding more agents means extra computational and storage overhead for each one. Additionally, the
complexity of communication and collaboration also escalates rapidly with system expansion. Since
agents have autonomous decision-making and execution capabilities, ensuring the correctness and
consistency of their decisions becomes increasingly complex, exhibiting a nonlinear and potentially
exponential growth in complexity. Furthermore, cross-agent communication, complex decision-
making, task decomposition, and scheduling become critical and significantly more challenging in
large-scale systems. Thus, controlling computational and collaboration costs while scaling remains
a fundamental issue that must be addressed in the design of multi-agent systems.

Model integration security. A primary security threat in model integration is prompt injection
attacks, which can be exploited to extract sensitive information, inject misleading content, or
manipulate models into executing unintended actions. While model integration enhances overall
system capabilities, it also introduces the potential risks associated with such attacks, underscoring
the necessity for robust defense mechanisms. In addition to prompt injection targeting the models,
the various interaction protocols used in model integration also introduce new attack surfaces.
Protocols standardizing agent-to-external system communication, such as MCP, are susceptible
to risks like code injection, remote access control, and credential theft within their server imple-
mentations and communication channels, which can result in information leakage or incorrect
execution of actions by LLMs. Protocols facilitating agent-to-agent or multi-model communication
(e.g., A2A, ACP, ANP) face distinct security challenges related to ensuring message authenticity,
authorizing interactions between peers, and preventing malicious coordination. Although research
on the security of these emerging protocols is still in development, existing studies highlight the
need to develop appropriate authentication, auditing, and configuration mechanisms tailored to
each protocol’s specific interaction model to mitigate vulnerabilities across the integrated system.

5.3.3 Road Ahead. Although the challenges mentioned above may appear distinct, they are inher-
ently interconnected due to the nature of model integration, which involves coordinating multiple
models or integrating models with external tools. To collectively address these issues, we propose
an intelligent prompt and secure framework. This framework consists of three core mod-
ules: a prompt module, a routing module, and a security module, each of which presents
opportunities for future research and advancements.
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Prompt module. This module serves two primary functions: prompt generation and prompt
filtering. The prompt generation process must facilitate cross-modal information transforma-
tion, extract relevant knowledge from external sources, and ultimately generate optimized input
prompts. To achieve this, the module must incorporate system monitoring, contextual understand-
ing, and adaptive decision-making. Furthermore, to ensure effective multimodal alignment, the
framework should align diverse data types [164] with LLM representation spaces and potentially
leverage token-free Transformer architectures [271] to enhance expressive capacity. In addition
to prompt generation, robust prompt filtering mechanisms are essential for preventing prompt
injection attacks. The module must filter potentially malicious or biased prompts before processing,
whether they originate from external sources or are generated by the LLM itself. Such defenses
are particularly critical in mitigating advanced attack strategies, as identified by Lee et al. [172],
where LLM-generated outputs can inadvertently function as adversarial prompts. To achieve this,
advanced content-aware techniques are needed to detect and filter malicious or biased content,
either based on predefined rules, LLM outputs, or patterns learned by LLMs from data.

Routing module. The routing module is responsible for orchestrating LLMs and other subsys-
tems within the framework. It must perform task decomposition, analyze task complexity, generate
execution pathways, and select appropriate models or subsystems to execute tasks either in parallel
or sequentially. Additionally, it dynamically manages computational resources, enabling efficient
scheduling and adaptive reasoning across multi-model, multimodal, and multi-agent systems,
thereby enhancing the model integration framework’s overall performance and problem-solving
capabilities. To achieve these objectives, different protocols and techniques are needed depending
on the nature of the interaction.

For standardizing the interaction between an Al model (agent) and external tools, data sources,
or services, often referred to as agent-tool invocation, leveraging the MCP is key. MCP provides a
unified interface standard for accessing tools, resources, and prompts, enabling the efficient man-
agement of tool and model invocation processes. This standardizes the flow of requests from agents
to external capabilities, allowing agents to seamlessly integrate diverse external functionalities by
simply adhering to the protocol. For coordination and collaboration between multiple agents or
models, often referred to as agent-to-agent or multi-model communication, specific communication
protocols are required to handle message exchange, task delegation, negotiation, and collaborative
execution. Protocols like A2A, ACP, and ANP are designed for various forms of inter-agent com-
munication, providing frameworks for performative messaging, capability discovery, and secure
peer interaction in different deployment contexts (e.g., within trusted organizational boundaries for
A2A, brokered communication for ACP, decentralized open networks for ANP). These protocols are
crucial for mitigating semantic inconsistencies and information transmission errors resulting from
heterogeneous communication methods among interacting agents or models, thereby enabling
the scalable coordination of multi-agent systems. Beyond communication protocols, achieving
robust coordination in multi-agent systems requires sophisticated scheduling and collaboration
mechanisms. Techniques from swarm intelligence such as bee algorithm, ant colony optimization
(ACO), and particle swarm optimization (PSO), as well as multi-agent game-theoretic models from
game theory, can be adopted to optimize task allocation, cooperation strategies, and autonomous
decision-making among agents (or models) within large-scale environments. These approaches com-
plement the communication protocols by providing the intelligence layer for complex multi-agent
coordination, thus driving LLM-based multi-agent systems toward greater efficiency, scalability,
and resource optimization.

Security module. Closely interacting with both the prompt and routing modules, the security
module acts as a critical protective layer against various threats in the integrated system. It mitigates
direct model risks such as prompt injection through techniques including self-supervised anomaly
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detection, static analysis, sandboxed inference, and reinforcement learning-driven adversarial
defense. Furthermore, it supports data isolation and secure interaction mechanisms within complex
workflows (including multi-model or multi-agent collaboration), preventing sensitive information
leakage and inhibiting the propagation of attacks between components.

Besides, securing the diverse interactions within this framework relies heavily on addressing
vulnerabilities in the underlying communication protocols. For agent-to-external system in-
teractions standardized by protocols like MCP, security concerns focus on securing the channel
between the agent and the tool server, which involves mitigating risks such as code injection,
remote access control, credential theft, and ensuring the integrity of tool invocations and data
exchange [127, 292]. To address these concerns, the security module can incorporate measures
such as firewall-based server protection, access control, and authentication for tool usage, as well
as logging and auditing of tool interactions [168, 254]. For agent-to-agent communication
and collaboration facilitated by protocols such as ACP, A2A, and ANP, security measures are
needed to ensure trustworthy interactions between autonomous agents. Challenges here include
verifying agent identity, ensuring message authenticity and integrity, authorizing peer-to-peer
actions, preventing unauthorized capability injection, and securing the coordination process itself.
These protocols incorporate mechanisms like digital signatures, strong authentication (e.g., DIDs,
mutual TLS), access control policies for agent skills, and secure session management [71]. The
security module can integrate and manage these protocol-specific security features to provide
threat detection and defense across all interaction types within the integrated system.

5.4 Model Compression

5.4.1 Research Status. Model compression aims to reduce the number of parameters or the memory
footprint of a model. We categorize it into three main approaches: quantization, KD, and pruning,
the same as [29, 206, 470].

Quantization techniques reduce the bit-width of LLM parameters to lower memory usage.
Post-training quantization methods typically target weights, activations, or KV cache, using either
floating-point or integer formats to reduce runtime memory requirements significantly. For instance,
Dettmers et al. [56] compressed both weights and activations to 8-bit integers. More aggressive
approaches, such as QulP [30] and KIVI [225], further reduce weights and KV cache to as few as
2 bits. To enhance compression effectiveness, methods such as COMET [212] and QServe [201]
simultaneously quantize weights, activations, and KV cache. However, aggressive quantization often
results in significant performance degradation. To address this issue, researchers have explored
retraining quantized models to mitigate performance loss, even if there is a cost of additional
training overhead. Techniques such as LLM-QAT [224], L4Q [143], and QLoRA [57] integrate KD
or PEFT to alleviate this overhead. L4Q [143] achieves post-training performance comparable
to fine-tuned models but is limited to weight quantization, restricting its overall compression
potential. Additionally, Huang et al. [136] reported severe performance degradation in quantized
versions of the LLaMA3 model, highlighting the limitations of current quantization techniques in
balancing model compactness and performance. These findings underscore the ongoing need for
advancements in quantization methodologies to ensure both efficiency and effectiveness.

KD aims to transfer knowledge from a more capable teacher model (TM) to a smaller student
model (SM), enabling the latter to achieve comparable performance with reduced computational
costs. The challenges in KD can be broadly categorized into two key aspects: (a) how to extract
knowledge and (b) how to learn the extracted knowledge effectively. A straightforward approach
to knowledge extraction is to provide the TM with input data and use its outputs as distilled knowl-
edge [283, 452, 465]. However, this method heavily depends on the capabilities of the TM [465]
and is constrained by the diversity and scale of the instruction set [186], potentially leading to
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poor generalization in the SM [314, 315]. To address these limitations, researchers have integrated
data cleaning with synthetic data generation to improve instruction set quality [60, 360, 432]. Addi-
tionally, self-knowledge techniques, wherein the SM generates new knowledge without relying
on the TM, have been explored [37, 409]. However, self-knowledge methods are susceptible to
inherent biases and hallucinations [326, 406], posing significant challenges to their effectiveness.
Instruction following (IF) is a widely used technique in KD, yet it faces limitations, such as de-
pendency on high-quality datasets [186] and difficulty in capturing the TM’s reasoning process.
To overcome these challenges, techniques like chain-of-thought (CoT) prompting [260, 362] have
been employed to enhance the SM’s reasoning capabilities. Recently, Choi et al. [40] proposed a
method that integrates LLM reasoning decomposition and planning capabilities with knowledge
graph-augmented reasoning. Their approach, implemented in the lightweight framework DeDer,
successfully distills reasoning skills into a compact model, demonstrating the potential of KD to
enable resource-constrained devices to perform complex tasks.

Pruning aims to enhance model efficiency and reduce computational overhead by removing
redundant neurons or weights. It can be categorized into structured pruning, semi-structured prun-
ing, and unstructured pruning. Structured pruning methods focus on removing entire structures,
such as neurons, channels, or attention heads, to maintain computational efficiency. Ma et al. [235]
proposed a notable structured pruning approach, LLM-Pruner, which constructs a structural de-
pendency graph of the LLM, groups parameters accordingly, identifies unimportant groups for
pruning, and subsequently restores model performance using LoRA. This method requires only
590k samples and three hours of training. However, combining structured pruning with PEFT
introduces additional training overhead and can lead to performance degradation [453]. To mitigate
these issues, Zhao et al. [448] introduced an adaptive pruning strategy, which removes parame-
ters irrelevant to fine-tuning tasks from the pretrained model while incorporating task-specific
parameters via distillation, thereby improving LLM performance with reduced computational
overhead. Semi-structured pruning provides a balance between flexibility and efficiency by enforc-
ing structured sparsity patterns at the matrix level. NVIDIA introduced a 2:4 structured sparsity
technique, which retains 2 out of every 4 weights in matrix computations, effectively accelerating
inference [247]. However, this approach can inadvertently remove critical weights, resulting in a
noticeable degradation of accuracy [336]. To address it, Tan et al. [336] proposed a method that
selectively retains essential weights while maintaining the 2:4 sparsity ratio, thereby improving
accuracy retention.

5.4.2 Challenges. The aforementioned discussion on model compression highlights several key
challenges associated with quantization, KD, and pruning.

For quantization challenges, while existing techniques effectively reduce memory consump-
tion, they often lead to performance degradation, posing a fundamental trade-off between com-
pression efficiency and model accuracy. Balancing these two aspects remains an open challenge.
Recent advancements have pushed parameter bit-width to its lower limits, with some approaches
reducing it to as few as 2 bits. However, the precise relationship between quantization levels and
performance degradation remains unclear. Several studies [98, 135, 136] have conducted empirical
analyses on the impact of quantization on model performance. However, current investigations
remain insufficient, particularly in open-source models such as the LLaMA family. As noted by Jin
et al. [153] and Yao et al. [422], existing research primarily focuses on a limited range of models
and quantization techniques, leaving significant gaps in understanding the broader implications of
extreme quantization.

Regarding KD challenges, the primary challenges lie in both knowledge extraction and knowl-
edge learning. For knowledge extraction, direct input-based methods offer a straightforward
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approach; however, they often yield suboptimal training outcomes and weak generalization in SMs.
Alternative strategies, such as self-knowledge and instruction following, are hindered by biases,
hallucinations, and dataset limitations. In terms of knowledge learning, acquiring abstract capabili-
ties such as reasoning and generalization remains a significant challenge. While CoT prompting
has been employed to enhance reasoning abilities in SMs, research on improving other abstract
skills remains scarce, highlighting an area for further exploration.

Finally, pruning presents challenges primarily in parameter selection. The removal of essential
parameters can lead to severe performance degradation, yet accurately distinguishing between
critical and redundant parameters remains an open research problem. Developing more reliable
pruning criteria and adaptive selection mechanisms is crucial to mitigating the risks associated
with aggressive parameter reduction.

5.4.3 Road Ahead. The challenges mentioned above highlight the key limitations in model com-
pression. While these challenges are primarily studied within the domain of ML, they can also be
addressed from an SE perspective. Overall, achieving compact and efficient model compression
remains a critical objective for future advancements, necessitating deep optimization of quantiza-
tion, KD, and pruning, as well as their integration with other optimization techniques to achieve
complementary benefits.

Quantization. Existing quantization techniques struggle to simultaneously support weight, KV
cache, and activation quantization while maintaining model performance. If all three components
can be effectively quantized while leveraging KD or PEFT to recover performance losses, it would
enable a better trade-off between computational efficiency and model compactness. Additionally,
conducting a comprehensive empirical study on the impact of different quantization levels on model
performance could provide valuable insights for future research. Further investigation is needed to
assess the effects of quantization across various downstream tasks, quantization techniques, and
model sizes. Developing an automated evaluation framework or plugins for quantization impact that
is capable of fine-grained performance loss analysis and automated optimization recommendations
would be a significant step forward.

KD. Beyond single-model KD, future research should explore the efficient integration of knowl-
edge across multiple models and diverse sources. Given the dynamic and multi-source nature of
real-world knowledge, designing a distributed KD training framework that supports multi-node
collaboration and asynchronous updates could significantly enhance LLMs’ generalization and
knowledge update capabilities. Such a framework would be particularly beneficial in federated
learning scenarios, enabling efficient KD in decentralized environments. However, despite extensive
research in this area [275, 290], several engineering challenges remain, including issues related to
data heterogeneity [131, 418, 442, 472], device heterogeneity [252, 318], and high communication
costs [90, 91]. Furthermore, to incentivize knowledge sharing among different nodes, blockchain
technology could be integrated into the framework, which would not only provide a mechanism
for incentivization but also enable knowledge traceability, mitigating the risks associated with
malicious nodes injecting harmful information.

Pruning. Semi-structured pruning techniques have demonstrated promising potential, and
future research may focus on intelligent weight selection, which requires a deeper understanding
of which weights and knowledge are essential for model functionality, which could potentially
leverage loss functions, activation functions, or other indicators. Zhang et al. [444] explored the use
of loss functions to distinguish between domain-specific and general knowledge, paving the way for
more precise pruning strategies. Additionally, integrating model testing techniques could enhance
pruning effectiveness by monitoring performance, which would help prevent severe degradation
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or the emergence of errors, thereby enabling dynamic pruning adjustments to maintain model
reliability while maximizing efficiency.

5.5 PEFT

5.5.1 Research Status. PEFT is a technique that updates only a subset of a model’s parameters
during fine-tuning, thereby achieving high efficiency while avoiding full-parameter modifications.
We categorize PEFT methods into three main types: additive, reparameterized, and selective
approaches, the same as [114, 389].

Additive PEFT techniques preserve the original model parameters while introducing additional
trainable parameters to adapt the model to downstream tasks. Representative methods in this
category include adapter layers and soft prompt. The trained adapter modules are inserted into
the model as additional Transformer layers, reducing the number of modified parameters. Based
on the insertion strategy, adapters can be classified into sequential adapters and parallel adapters.
Sequential adapters primarily focus on adapting to specific tasks, while parallel adapters com-
bine the outputs of both the adapter and the main model, making them better suited for complex
scenarios [161]. However, adapters introduce additional modules, increasing model complexity,
maintenance overhead, and inference latency [302]. In contrast, the soft prompt method appends
a set of learnable vectors, aligned with the embedding layer, to the input prompt. These vectors
guide the LLM to perform downstream tasks more effectively without modifying the model archi-
tecture [354]. Unlike adapters, soft prompt avoid additional structural complexity and inference
overhead and can be transferred between different models and tasks [351, 400]. However, soft
prompt do not fundamentally enhance the model’s capabilities, as they primarily rely on the LLM’s
inherent reasoning capabilities [365]. Moreover, soft prompt are vulnerable to adversarial attacks,
particularly prompt injection attacks [258, 419]. Compared to standard prompt-based attacks, soft
prompt manipulations are more likely to bypass a model’s safety alignment mechanisms and induce
unintended behaviors [308, 415]. For example, the malicious soft prompt can lead to unintended data
leakage, including the inadvertent exposure of sensitive information from the training corpus [162].

Selective PEFT fine-tunes a model by masking a portion of its parameters, similar to pruning. It
can be broadly categorized into structured masking and unstructured masking, both of which aim to
identify an optimal subset of parameters for fine-tuning. Representative approaches include gradient-
based methods [31, 181, 411], data-driven methods [52, 63], and search-based methods [25, 462].
The primary advantage of selective PEFT is that it does not increase the inference cost of the
LLM, making it an attractive alternative to other PEFT techniques. However, the complexity
of parameter selection strategies introduces significant challenges in model development and
debugging. Additionally, Ploner et al. [287] observed that randomly selected parameter subsets such
as those employed in LoRA often yield performance comparable to carefully designed selection
strategies. Their findings raise questions regarding the practical benefits of extensive debugging
efforts, given the marginal improvements achieved over random parameter selection.

Reparameterized PEFT modifies the model’s parameterization to enable more efficient adap-
tation. Among these methods, LoRA is a widely adopted approach. LoRA employs low-rank
decomposition to train a separate module, which is then used to reparameterize specific model
weights. A single model can incorporate multiple LoRA-trained modules, allowing for the selection
of different module combinations during inference based on specific requirements. Despite its
efficiency, LoRA presents two primary challenges: improving LoRA’s performance and selecting
appropriate LoRA modules. (a) Performance optimization. Numerous techniques have been proposed
to enhance LoRA’s effectiveness, including dynamic rank adjustment [346, 445], earning rate opti-
mization [118], and regularization strategies to mitigate overfitting [200, 359]. However, the extent
of these improvements remains constrained. Zhang et al. [439] found that LoRA’s performance
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is predominantly influenced by the inherent capabilities of the base model, suggesting that opti-
mizations at the LoRA level offer only limited benefits. (b) Module selection and inference efficiency.
Optimizing LoRA module selection can significantly reduce LLM inference latency and enhance
overall performance. For instance, Kong et al. [166] observed that the insertion of LoRA modules
leads to fragmented CUDA kernel calls, severely degrading inference efficiency. To address this,
they proposed a novel token-wise routing strategy to minimize unnecessary kernel invocations.
Similarly, Wu et al. [379] introduced a dynamic switching mechanism between merged and un-
merged models to reduce inference latency in model as a service (MaaS) scenarios. Their approach
further integrates batching techniques and a request-adapter co-migration strategy to improve
GPU resource utilization and overall service performance. (c) security considerations. Despite its
advantages, LoRA introduces security concerns due to the additional fine-tuning it requires. Liu
et al. [208] demonstrated that open-source LoRA adapters are vulnerable to backdoor attacks.
Moreover, Xu et al. [128] highlighted that even when training datasets do not contain malicious
data, aligned LLMs remain susceptible to adversarial threats. To mitigate these risks, they proposed
Safe LoRA, which constrains LoRA updates using a projection operation, ensuring that parameter
updates align with a predefined security-preserving matrix, thereby enhancing robustness against
adversarial manipulations.

5.5.2  Challenges. The research mentioned above highlights several key challenges associated with
PEFT. We categorize these challenges as follows:

Additive PEFT challenges. While adapter layers facilitate seamless integration with LLMs,
they also introduce additional complexity in system maintenance. The selection, combination,
and interconnection of different adapter layers pose significant engineering challenges, yet they
also present opportunities for further advancements. Moreover, the insertion of adapter layers
inevitably increases inference latency, which can be detrimental to latency-sensitive applications.
In contrast, soft prompt mitigate these performance concerns but raise security and privacy risks,
as they may inadvertently expose sensitive or private data from the training process.

Selective PEFT challenges. The primary challenge in selective PEFT lies in selecting the
appropriate parameters. Simple selection strategies may fail to achieve optimal fine-tuning results,
whereas more sophisticated selection mechanisms not only introduce additional development
and debugging overhead but also do not necessarily outperform random selection, which raises
concerns regarding the feasibility and practical benefits of selective PEFT.

LoRA challenges. As a representative reparameterized PEFT method, LoRA enables efficient
fine-tuning but faces limitations related to inference efficiency and security vulnerabilities. The
integration of LoRA could lead to fragmented CUDA kernel calls, thereby reducing inference effi-
ciency. Additionally, LoRA-trained adapters have been demonstrated to be susceptible to backdoor
attacks. Although ongoing research aims to enhance LoRA’s robustness and efficiency, substantial
challenges remain, limiting its applicability in security-critical and latency-sensitive scenarios.

5.5.3 Road Ahead. To address the challenges mentioned above, there are several research directions
for further exploration. For challenges associated with adapter layer insertion, an adaptive adapter
architecture could be developed to facilitate adapter selection, composition, and integration.
Hu et al. [130] proposed a broad adapter integration framework. However, their approach lacks
considerations for composition design and optimization at deployment. Future research could focus
on automated optimization, modularization, and standardization of adaptive adapter architectures.
For instance, standardized APIs for adapter layers, dynamic adapter loading mechanisms that
activate specific adapters only when necessary, and optimized caching strategies could significantly
enhance inference efficiency. Additionally, automatic search techniques could be employed to
determine the optimal adapter combinations, adapter depth, and activation strategies. While such
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techniques have been extensively studied in vision models [426, 429, 467], their application in
LLMs remains underexplored. Notably, research on adaptive architectures is also applicable to
LoRA, since it can be seen as a special form of adapter that modifies the original Transformer’s
weights instead of introducing additional layers. For example, Wu et al. [379] proposed a method
for dynamically merging and migrating LoRA adapters to enhance the throughput of LLM servers.

For challenges related to parameter selection in selective PEFT, similar to pruning, parameter
testing and recommendation tools could be leveraged to evaluate the impact of different
hyperparameter configurations on model performance, which would enable the development of
more effective parameter selection strategies while also facilitating the identification of optimal
hyperparameter combinations.

PEFT security presents two key challenges: (a) soft prompt may expose private data, and (b)
adapters (including LoRA adapters) are vulnerable to backdoor attacks. To mitigate risks associated
with soft prompt, soft prompt filtering techniques, as discussed in §5.3.3, could be extended
to prevent inadvertent data leakage. These techniques must ensure that filtered prompts retain
both security and semantic fidelity. However, unlike standard prompt-based attacks, soft prompt
manipulate the embedding layer, making them more challenging to defend against using traditional
LLM security mechanisms [308]. Therefore, further research on protective measures for embedding
layers is necessary. Regarding backdoor vulnerabilities in adapters, a potential solution could
involve data filtering and detection inspired by existing research on mitigating data poisoning in
open-source models. For instance, verifying whether LoRA’s training data has been compromised
could leverage data provenance techniques, such as traceability analysis and trusted data sources, as
outlined in §4.2.3. Additionally, adversarial training could be employed to enhance the robustness
of LoRA-based adaptations, thereby improving security and reliability.

6 TESTING AND EVALUATION

The testing and evaluation of LLMs pose multifaceted challenges, as shown in Figure 7. Inspired
by Chang et al. [26], we propose that these challenges can be systematically analyzed through
three critical dimensions: what, where, and how to test and evaluate LLMs. These dimensions
extend beyond the technical assessment of model performance to encompass broader considerations
related to model deployment and real-world usage. The complex relationship between these factors
highlights the need for systematic methodologies and innovative evaluation frameworks to ensure
the reliability, robustness, and fairness of LLMs.
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Fig. 7. Challenges and Road Ahead in §6 Testing and Evaluation.
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6.1 What to Test and Evaluate

6.1.1 Research Status. The evaluation of LLMs spans multiple dimensions. From an application-
driven perspective, researchers have explored LLM performance across diverse domains, including
medicine [19, 50], education [404], SE [211], and finance [386]. In domains requiring advanced cog-
nitive capabilities or creativity, studies have assessed LLMs’ effectiveness in scientific research [332]
and creative tasks [24]. Additionally, evaluations have focused on intrinsic model attributes, such
as bias [301], reasoning capabilities [369], and planning capabilities [251]. Despite these efforts,
there are still two significant challenges:

Difficulty in assessing certain capabilities. Many LLM capabilities are inherently difficult
to quantify. Generative tasks, such as dialogue generation and writing, exhibit a high degree of
subjectivity, making them challenging to evaluate using traditional objective metrics (e.g., accuracy).
Scientifically quantifying abstract factors such as “creativity,” “relevance,” or “user satisfaction”
remains an open research problem [158]. Additionally, certain attributes, such as reasoning, are
difficult to observe directly. It is often unclear whether an LLM derives its responses through actual
reasoning processes or merely retrieves relevant information from its knowledge base [12, 347].

Inconsistency in evaluation results. Variations in evaluation methodologies and metrics
across different domains and tasks frequently result in inconsistencies in model performance
assessments. For example, Gandhi et al. [92] identified discrepancies in LLM reasoning test re-
sults, highlighting underlying limitations in existing evaluation frameworks. Moreover, Greenblatt
et al. [101] documented an issue where models adhere to training objectives during fine-tuning but
fail to maintain this alignment in different scenarios, a phenomenon referred to as alignment faking.
These inconsistencies raise concerns regarding the validity and robustness of current evaluation
methodologies [92], underscoring the need for more comprehensive and rigorous evaluation.

6.1.2 Challenges. Capabilities assessment challenges. While certain LLM capabilities, such as
code completion and mathematical computation, can be evaluated using manually designed test
cases, more abstract skills such as reasoning, writing, and planning pose significant challenges
for traditional evaluation methodologies. This difficulty arises from the inherent complexity of
designing effective test cases, as well as the absence of well-defined quantitative metrics for
objectively measuring these higher-order cognitive capabilities.

Inconsistent evaluation results. Another challenge is that assessments of whether an LLM
possesses a particular capability or adheres to alignment expectations often yield inconsistent
results. One possible explanation is the absence of scientifically rigorous evaluation methodologies,
which can lead to discrepancies in judgment across different evaluation frameworks. Another
factor is the phenomenon of alignment faking [101], where models appear to comply with expected
behaviors during evaluation but deviate from them in different scenarios, raising concerns about
the reliability of existing evaluation techniques.

6.1.3 Road Ahead. The challenges mentioned above highlight the limitations of current evaluation
methodologies. Future research could focus on developing diverse and scientifically grounded
evaluation frameworks that incorporate cross-domain methodologies to ensure comprehensive,
reliable, and objective assessments of LLM performance across varied capabilities and tasks.
Cross-domain methodologies for capability assessment. A promising direction for improv-
ing the evaluation of LLM capabilities is the integration of cross-domain methodologies, which
can enhance the scientific rigor of assessment techniques. This cross-domain approach holds
significant potential. For example, in terms of KD, insights from educational science could be
leveraged to assess a TM’s effectiveness in knowledge transfer or an SM’s capability to acquire
and generalize learned information. Similarly, logic-based analysis could provide a more rigorous
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framework for evaluating reasoning capabilities. By adopting scientifically rigorous evaluation
methods, researchers can not only improve the assessment of abstract capabilities but also mitigate
inconsistencies in evaluations.

Enhancing alignment evaluation through different testing environments. The emergence
of alignment faking [101] underscores the influence of evaluation environment inconsistencies,
wherein models demonstrate different behaviors under varying conditions. This phenomenon sug-
gests that future evaluation methodologies should account for the impact of varying environments
on evaluation outcomes, ensuring consistency and reliability across real-world usage scenarios.
Developing adaptive evaluation frameworks that dynamically adjust test scenarios based on user in-
puts and interaction patterns could improve the robustness of alignment assessments. Additionally,
integrating longitudinal evaluation strategies, where models are assessed over extended periods
rather than in isolated test cases, could provide deeper insights into the stability of alignment and
behavioral consistency. By grounding evaluations in different interaction environments, researchers
can ensure more reliable assessments of LLM alignment and generalization capabilities.

6.2 Where to Test and Evaluate

6.2.1 Research Status. Numerous benchmarks have been developed to evaluate the capabilities
of LLMs, each exhibiting distinct characteristics. Many of these benchmarks focus on assessing
only a subset of LLM capabilities. For instance, code-related benchmarks such as xCodeEval [160],
CoderUJB [436], and CrossCodeEval [62] primarily evaluate code understanding, generation, trans-
lation, and retrieval. Similarly, reasoning-oriented benchmarks like PlanBench [347] and Legal-
Bench [106] target reasoning capabilities, while multimodal benchmarks such as SEED-Bench [175]
and MM-SafetyBench [219] assess the performance of multimodal LLMs. Even within these spe-
cialized domains, benchmarks often focus on narrower subtasks. For example, within code-related
evaluations, benchmarks like HumanEval [36], ClassEval [66], and EvoCodeBench [182] assess
Python code generation, whereas JavaBench [20] and SWE-Bench-Java [435] evaluate Java code
generation and repair, respectively.

Despite their utility, existing benchmarks suffer from several limitations. First, limited test case
coverage restricts their comprehensiveness, as many benchmarks contain only a small number of
test cases, reducing their capability to provide a holistic assessment of LLM capabilities. Additionally,
the lack of standardized benchmark construction guidelines results in inconsistent dataset quality,
leading to fragmented evaluation methodologies. As noted by McIntosh et al. [243], many existing
benchmarks fail to capture nuanced aspects such as bias, genuine reasoning, and adherence to
cultural and ideological norms.

Another significant challenge is data contamination, where test cases from benchmarks may
have been seen by LLMs during training, leading to unrealistically high evaluation scores and
overestimated model capabilities. This issue arises due to overlaps between real-world data used
for benchmark construction and LLM training datasets. Even manually curated benchmarks such
as HumanEval have been found to contain instances that newer models have encountered during
training [298, 410].To mitigate this issue, some studies have proposed ensuring that benchmark
data is sampled after the release of LLMs [81, 160]. However, these efforts have proven insufficient,
as contamination can still occur when newer models are trained on datasets that include older
benchmark samples [21, 410]. Data augmentation has gained attention as a potential solution, as it
can generate novel data instances that were not present in the original dataset. Zhu et al. [466]
introduced a psychometric-inspired data augmentation method to evaluate LLMs from multiple
perspectives by modifying existing datasets. Additionally, researchers have leveraged LLM-based
methods [384] to generate augmented datasets, taking advantage of LLMs’ advanced language
understanding and generation capabilities.
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Ultimately, the lack of standardized benchmark usage guidelines leads to significant variability
in evaluation quality and scope, resulting in divergent and sometimes inconsistent assessment
outcomes. To address this, it is essential to develop a standardized evaluation framework that
objectively assesses the reliability, scope, and validity of benchmark-based evaluations. In general,
these limitations highlight the need for comprehensive research to develop more robust bench-
marks, establish effective anti-contamination mechanisms, and create standardized assessment
methodologies to enhance the reliability and fairness of LLM evaluations.

6.2.2 Challenges. Limited benchmark quality. While the number of benchmarks for evaluating
LLMs has grown rapidly, many of them still face fundamental quality limitations. First, their scope
is often restricted, even within a specific capability domain; existing benchmarks frequently fail to
provide comprehensive coverage. Second, there is a notable difficulty distribution imbalance in
test cases—some benchmarks are excessively challenging, while others are too simplistic, making
it difficult to accurately assess an LLM’s actual capabilities. Third, benchmarks rapidly become
outdated, as LLMs continue to advance, many existing benchmarks lose their effectiveness over
time, necessitating continuous updates and refinements to remain relevant.

Data contamination. As discussed before, data contamination can significantly distort evalua-
tion results by introducing test cases that LLMs may have seen during training. Although mitigation
strategies, such as post-release sampling and sample rephrasing, have been proposed, these ap-
proaches remain imperfect, highlighting the need for more robust methodologies that can effectively
minimize data contamination while ensuring the validity and reliability of assessments.

6.2.3 Road Ahead. As LLMs continue to evolve, the limitations of existing evaluation benchmarks
will persist, posing ongoing challenges. However, the development of a comprehensive evaluation
platform could significantly mitigate these issues. Such a platform would provide a dedicated
infrastructure for benchmark maintenance, facilitating continuous updates and the integration of
new evaluation datasets. By enhancing benchmark reliability and diversity, this approach could
help address the inherent shortcomings of current evaluation methodologies. While platforms such
as Hugging Face [76] offer shared evaluation datasets, they lack effective dataset management,
systematic benchmark updates, and continuous integration capabilities. Consequently, evaluation
dataset quality remains inconsistent, limiting their ability to ensure benchmark reliability. To
overcome these challenges, future research should focus on designing an adaptive benchmark
management system that enables automated dataset curation, real-time benchmark refinement,
and the dynamic integration of newly proposed evaluation metrics.

Additionally, since many LLM training datasets are not publicly available, the risk of data
contamination remains a critical concern. To address this, data perturbation techniques could
provide a potential solution. By transforming existing benchmark samples into novel representations
while preserving their original semantic meaning, these techniques could generate test cases that
are distinct from those encountered during model training. This approach would help reduce the
likelihood of evaluation biases, regardless of whether the original benchmark data is sourced from
real-world datasets or synthetically generated.

6.3 How to Test and Evaluate

6.3.1 Research Status. In the evaluation of LLMs, certain capabilities, such as fill-in-the-middle
(FIM) performance in the coding domain [61, 97, 218, 381], can be assessed through the automated
execution of test cases, yielding objective pass rate metrics. However, more abstract capabilities, such
as creativity and reasoning, are significantly more challenging to evaluate automatically and often
require human judgment [24, 320, 353]. This reliance on manual evaluation introduces two primary
issues. First, human judgment is subjective, leading to inconsistencies and reduced reliability in
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evaluation outcomes. Second, manual assessment is both time-consuming and labor-intensive, mak-
ing large-scale evaluations impractical and limiting the comprehensiveness of assessments. These
challenges highlight the need for developing more scalable and objective evaluation methodologies.

6.3.2 Challenges. Automated evaluation process. While certain LLM capabilities can be as-
sessed using automated tools, more abstract capabilities such as creativity and reasoning remain
challenging to evaluate fully automatically. As a result, manual assessment is often required, intro-
ducing subjectivity that reduces the accuracy and reliability of evaluation outcomes. Moreover, the
reliance on human judgment limits the feasibility of conducting large-scale assessments, posing a
significant barrier to comprehensive and scalable LLM evaluation.

6.3.3 Road Ahead. Given the powerful capabilities of LLMs, LLM-based evaluation methods,
commonly referred to as LLM-as-a-Judge, have gained increasing attention [41, 116, 180, 202, 358].
However, these methods are inherently influenced by the biases present in LLMs [169, 372, 424], as
well as their intrinsic limitations [348, 372], which may lead to inaccurate evaluation outcomes.
Therefore, a key research direction is the development of more robust and reliable LLM-as-a-
Judge frameworks, which includes strategies to mitigate biases in evaluation and the integration of
multi-model and multi-modal approaches to enhance fairness and reliability. By leveraging diverse
models and modalities, these methods could reduce individual model biases and improve overall
assessment accuracy. Another promising direction is human-LLM collaborative evaluation,
which serves as a compromise between full automation and evaluation accuracy. The goal of this
approach is to balance the efficiency of automated evaluation with the careful judgment of human
evaluators, thereby producing LLM assessments that are both reliable and interpretable.

7 DEPLOYMENT AND OPERATIONS

As discussed in §5.3, the deployment of LLMs presents several challenges, including computational
resource constraints, deployment architecture design, and security and privacy concerns. To sys-
tematically explore these challenges, we classify LLM deployment into three categories based on
the location of computational resources: cluster deployment, edge deployment, and hybrid
deployment, which is shown in Figure 8.
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Fig. 8. Challenges and Road Ahead in §7 Deployment and Operations.

7.1 Cluster Deployment

7.1.1  Research Status. Cluster deployment refers to deploying models in high-performance com-
puting clusters, such as the cloud, to leverage distributed computing for large-scale inference. While
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this approach enables efficient processing of large-scale requests, it also introduces significant
technical and operational challenges.

Resource management. Managing computational resources in a distributed environment is
inherently complex, particularly due to the need for efficient parallelization across heterogeneous
hardware (e.g., GPUs, TPUs). To keep systems responsive while evenly distributing tasks, there’s
a need for smart scheduling methods and flexible resource scaling [451]. Hisaharo et al. [123] re-
designed the cluster computing architecture of GPT-Neo and optimized software implementations
to enhance inference efficiency. Similarly, Zhao et al. [451] proposed an adaptive algorithm for op-
timizing LLM inference in heterogeneous environments by dynamically adjusting mixed-precision
quantization and GPU allocation strategies to improve throughput. Additionally, LLM-Pilot [171]
introduced a predictive model that recommends cost-effective hardware configurations, further
improving resource utilization.

Inference latency. Despite the high throughput of cluster-based deployment, ensuring con-
sistently low-latency responses under high-concurrency conditions (e.g., thousands of simultane-
ous requests) remains a significant challenge. Optimized batching strategies, model partitioning
techniques (e.g., pipeline heterogeneity [120]), and hardware-aware kernel fusion are commonly
employed to mitigate computational bottlenecks. Local checkpoint storage [89] and splitwise
techniques [279] have been proposed to enhance inference efficiency. However, while checkpoint
storage reduces redundant computation, it increases storage overhead, whereas inter-stage com-
putation transfers in splitwise techniques offer only limited latency reductions. Sarathi-Serve [7]
introduced chunked-prefill and stall-free scheduling techniques, significantly reducing inference
latency under high-throughput conditions, with greater optimizations observed for larger models,
suggesting their scalability benefits. Zhang et al. [443] explored collaborative edge computing
to partition clusters and employed dynamic programming to minimize latency and maximize
throughput. However, cross-partition data transfers introduce potential privacy risks, which will
be discussed later.

Energy efficiency. The substantial energy consumption associated with training and inference
on GPU/TPU clusters necessitates effective hardware utilization and memory optimization. To
address this issue, Wilkins et al. [376] proposed a technique that dynamically allocates computational
resources based on token input-output ratios, thereby reducing energy consumption. Hisaharo
et al. [123] and Stojkovic et al. [328] introduced optimization algorithms for dynamically managing
inference resources to lower energy consumption. However, the search space of such algorithms
remains large, prompting Maliakel et al. [240] to explore key parameters affecting energy efficiency
across different LLMs and tasks. Their findings highlight the need for task-specific hardware
optimizations to enhance efficiency further. Additionally, Hewage et al. [122] identified CPU aging
as a contributing factor to increased energy consumption and proposed optimization strategies
aimed at extending CPU longevity to reduce energy usage.

Security risks. Cluster-based LLM deployment is susceptible to security threats, including
adversarial attacks on exposed APIs and data leakage in multi-tenant environments [53]. Yang
et al. [408] found that LLM service providers often optimize inference efficiency by sharing KV
caches, inadvertently exposing user privacy. Furthermore, Soleimani et al. [322] demonstrated
vulnerabilities in speculative decoding optimizations, introducing a novel side-channel attack
capable of extracting LLM token information from encrypted transmissions, such as token size.
To mitigate these risks, encryption techniques such as multi-party computation (MPC) [295],
homomorphic encryption (HE) [474], and TEE [249] have been applied to LLM inference. However,
while these methods enhance privacy protection, they introduce significant computational overhead,
resulting in increased inference latency, which limits their practicality in real-world applications.
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Additionally, handling non-linear computations such as the softmax function remains a significant
challenge in encrypted LLM inference [474].

In addition, weak authentication mechanisms and the imperfect of LLM deployment frameworks
introduce further security concerns. Pesati et al.[284] found that unreliable authentication mecha-
nisms can lead to LLMs being hijacked or manipulated, posing serious security risks. Hou et al.[125]
analyzed several popular LLM deployment frameworks such as ComfyUI [44] and Ollama [265],
and identified widespread model information disclosure vulnerabilities. These issues can also lead
to unauthorized access, exploitation of system vulnerabilities, and other security threats.

7.1.2  Challenges. As discussed in §7.1.1, the challenges of LLM cluster deployment can be catego-
rized into the following four aspects.

Resource management. Efficient resource management is crucial in heterogeneous and dis-
tributed environments, requiring sophisticated scheduling algorithms and dynamic scaling mecha-
nisms to balance concurrency and inference latency. The challenge of handling GPUs, TPUs, and
other specialized hardware makes performance tuning more difficult, requiring flexible resource
allocation methods that adapt to different system demands.

Inference latency. Minimizing inference latency is essential not only for improving user
experience but also for reducing operational costs. However, optimizing LLM inference presents
a systemic engineering challenge that involves architectural design, workload distribution, and
hardware utilization. Techniques such as model partitioning, batching strategies, and pipeline
parallelism have led to noticeable improvements in performance. However, they still face limitations
in scalability and hardware efficiency, leaving many areas open for further refinement.

Energy efficiency. LLM inference demands substantial computational resources, resulting in
high energy consumption. Existing energy-saving strategies include optimizing resource allocation,
extending the lifespan of hardware, and implementing efficient scheduling policies. However, given
the vast optimization space, determining the optimal configuration remains a significant challenge.

Security and privacy. Cluster-based LLM deployment introduces security and privacy risks,
including potential data leakage due to shared KV caches and API calls. Issues such as weak
authentication, information disclosure, and unauthorized access further highlight the diversity
and complexity of LLM security challenges. Addressing these issues cannot rely on patching
individual vulnerabilities or adopting traditional security technologies such as encryption. Instead,
it requires a comprehensive security strategy that combines robust access control, fine-grained API
governance, secure configuration management, and continuous monitoring. Moreover, securing
LLM deployments should be treated as a system-level problem, involving coordination across
model architecture, serving infrastructure, and user interaction layers to ensure a defense-in-depth
approach.

7.1.3  Road Ahead. We categorize the challenges mentioned above into two key areas: LLM cluster
inference optimization and LLM cluster inference privacy and security concerns.

For LLM inference optimization, existing approaches to addressing high concurrency, low latency,
and energy efficiency primarily focus on scheduling design and architectural optimization, making
these areas critical for further research. However, the vast number of optimization factors results
in a huge search space, complicating the identification of an optimal configuration. A crucial future
direction is the development of an efficient scheduling algorithm capable of dynamically explor-
ing this search space and autonomously determining resource allocation and real-time scheduling
strategies. Such an algorithm should be designed to optimize multiple objectives simultaneously,
ensuring high concurrency, low latency, and reduced energy consumption while adapting to varying
workloads and hardware configurations.
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Concerning privacy and security concerns, establishing a comprehensive privacy-preserving
and security risk assessment framework will be essential in the future. Regarding privacy
preservation, differential privacy techniques [343, 447] show promise by introducing controlled
noise into prompts or token representations, obscuring sensitive information. Such techniques offer
configurable privacy settings that balance data confidentiality with model utility, thus enhancing
the practicality of secure LLM inference. Regarding security risk assessment, it is equally essential
to incorporate mechanisms for identifying, assessing, and mitigating security threats. This includes
developing unified identity and access management frameworks to enforce fine-grained, role-based
permissions, ensuring minimal privilege assignment, and providing standardized authentication
interfaces to facilitate integration with third-party services. Additionally, specialized security
analysis tools, such as static configuration analyzers, automated endpoint scanning, and risk
assessment utilities, should be introduced to systematically address issues related to configuration
leakage and interface exposure. These integrated efforts collectively reinforce the robustness of
LLM deployment frameworks.

7.2 Edge Deployment

7.2.1 Research Status. Edge deployment refers to deploying LLMs on edge devices near the data
source, such as smartphones, IoT devices, and edge servers, referred to as on-device LLMs, rather
than relying on centralized cloud infrastructure. This approach alleviates the computational burden
on cloud-based LLM services while enhancing the quality of commercial LLM applications. However,
it introduces challenges, primarily due to memory and computational resource constraints [58].

Hardware constraints. Edge devices typically have limited computing resources (e.g., mobile
CPUs and GPUs), restricted memory capacity, and energy constraints, necessitating the use of model
compression techniques. However, these techniques often come at the cost of reduced accuracy or
robustness. To address this issue, Ma et al. [233] proposed a quantization technique where each
parameter takes values from {-1,0,1}, achieving significant improvements in memory efficiency,
inference latency, energy consumption, and throughput. Similarly, Li et al. [184] introduced four
techniques, providing diverse strategies for improving LLM deployment on mobile devices.

Platform heterogeneity. The deployment of LLMs on edge devices is further complicated by
platform heterogeneity, as models must be compatible with diverse architectures (e.g., ARM-based
chips, NPUs). Several existing solutions facilitate cross-platform deployment. Llama.cpp [96] is a
C++ library that supports LLM deployment across various hardware platforms, integrating integer
quantization and GPU acceleration. MNN [149], a mobile neural network framework, enables
deployment across different backends, with its extension MNN-LLM specifically designed for LLM
deployment on mobile devices, PCs, and embedded systems. ExecuTorch [288] is an end-to-end
edge inference framework tailored for deploying PyTorch models on edge devices.

Security risks. Edge deployment also introduces heightened security risks, as models are
exposed in a white-box manner, making them more susceptible to physical tampering, adversarial
inputs, and model stealing [188]. However, processing sensitive user information locally reduces
the risk of data leakage compared to cloud-based deployment [188, 443], highlighting a trade-off
between security threats and privacy benefits.

7.2.2  Challenges. Edge deployment presents three primary challenges. Hardware Constraints.
Unlike centralized servers, edge devices have limited computational capabilities, necessitating
model compression before deployment. However, this process involves a trade-off between model
size and performance, as aggressive compression techniques can degrade accuracy and robustness.
Platform Heterogeneity. The diversity of operating systems and hardware architectures across
edge devices complicates deployment, requiring additional driver support and optimization for
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compatibility. While certain open-source tools facilitate cross-platform deployment, most solutions
are tailored to specific LLM ecosystems or hardware platforms, limiting their general applicability.
Security Risks. Models deployed on edge devices are effectively exposed in a white-box manner,
making them vulnerable to threats such as model extraction and adversarial attacks. Ensuring
robust security mechanisms while maintaining efficient inference remains a challenge.

7.2.3 Road Ahead. Both hardware constraints and platform heterogeneity are deployment-
related challenges that can be addressed through SE solutions. A key direction for future research
is the development of generalized deployment frameworks, such as Llama.cpp and MNN,
which facilitate seamless LLM deployment across diverse edge devices. These frameworks should
not only support cross-platform compatibility but also integrate common model compression
and fine-tuning techniques, allowing users to optimize models according to specific deployment
requirements. Furthermore, to enhance their applicability, these tools should be extended beyond
the LLaMA family to support a broader range of models, such as the DeepSeek family and the
Gemma family, among others.

Regarding security risks in edge LLM deployment, existing research remains limited. Given the
heterogeneous and dynamic nature of edge computing environments, potential attack vectors are
diverse and complex. One promising approach is executing models within a TEE, which provides
hardware-based isolation for secure model inference. However, this method introduces additional
challenges, as it requires specialized hardware support and remains vulnerable to various security
threats [23], including side-channel attacks such as CipherFix attacks [375] and cache side-channel
attacks [473]. Therefore, future research on secure TEE-based LLM deployment should focus
on two key aspects: (a) ensuring compatibility across diverse hardware architectures to promote
widespread adoption, and (b) developing robust defense mechanisms against known vulnerabilities,
such as side-channel attacks [375, 473], to enhance the security and reliability of on-device LLMs.

7.3 Hybrid Deployment

7.3.1 Research Status. Hybrid deployment, such as edge-cloud collaborative computing, integrates
the advantages of both edge and cloud deployment, offering additional benefits. On one hand, it
enhances the flexibility of model deployment and task execution—computationally intensive tasks
can be offloaded to cloud clusters, whereas lightweight tasks can be processed on edge devices.
On the other hand, it broadens the application scenarios of LLMs, enabling cross-regional task
execution and real-time decision-making in latency-sensitive applications.

Device collaboration. Effective collaboration between cloud and edge devices requires dynamic
task partitioning and computation offloading while balancing inference latency, bandwidth con-
straints, and data privacy [121, 407, 443]. He et al. [121] proposed an active inference approach using
reinforcement learning for resource scheduling in cloud-edge LLM inference. CE-CoLLM [151], a
cloud-edge collaborative inference framework, employs early-exit mechanisms, a cloud context
manager, and quantization to reduce high communication overhead, achieving both low-latency
edge standalone inference and high-accuracy cloud-edge collaborative inference. Additionally, Hao
et al. [115] introduced a hybrid inference method that leverages small models on edge devices in
conjunction with large cloud-based models to enhance inference performance.

Data security. Hybrid deployment involves extensive data exchange, increasing the risk of data
leakage. Common privacy-preserving techniques include federated learning [32, 167], differential
privacy [27, 262, 313], and split learning [291]. Federated learning protects user data by enabling
local model training while updating a global model in the cloud. Differential privacy introduces noise
into data to obscure sensitive information, whereas split learning transmits only partial computation
results to the cloud, thereby minimizing data exposure. However, there still are privacy risks, as
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adversarial servers may attempt to reconstruct users’ original data [291]. Furthermore, as previously
discussed, attacks such as leveraging soft prompt to expose LLM training data could also manifest
in hybrid deployment settings. Ensuring data security in hybrid deployments remains an open
research challenge that requires further investigation.

7.3.2  Challenges. Hybrid deployment introduces additional challenges beyond those encountered
in cluster and edge deployment. Device collaboration. Unlike cluster deployment, hybrid deploy-
ment requires efficient coordination between edge devices and cloud servers. The heterogeneity of
edge devices, each with varying computational capabilities, further complicates scheduling, making
task offloading and resource allocation more challenging. Additionally, optimizing these processes
must account for inference latency, bandwidth constraints, and dynamic workload distribution,
increasing the complexity of system coordination. Data security. Compared to edge deployment,
hybrid deployment involves frequent data exchanges with cloud servers, heightening the risk of data
exposure. Unlike in cluster deployment, this risk is made worse by the diverse and less controlled
nature of edge environments. Moreover, since both cloud servers and edge devices participate in
computations, either party could act maliciously, making security threats more unpredictable and
the deployment environment more complex.

7.3.3  Road Ahead. To address the challenges associated with device collaboration, future re-
search can explore collaborative optimization schemes from three key perspectives: low-latency
communication, performance optimization, and intelligent scheduling. For low-latency communi-
cation, advancements in networking and data transmission technologies are crucial for accelerating
information exchange within collaborative networks and minimizing communication delays. From
a SE perspective, optimizing the inference process itself can significantly enhance communication
efficiency between cloud and edge devices. Future solutions could integrate techniques such as
vector database caching [421] and MoE architectures [152] to reduce latency and improve inference
performance. Regarding performance optimization, traditional LLM enhancement techniques
(e.g., RAG, MoE, and prompt engineering [152, 289]) can be leveraged to improve hybrid inference
efficiency. Additionally, novel strategies, such as constraint satisfaction mechanisms for complex
decision-making in edge-cloud collaboration [417] and the integration of quantization with effi-
cient local inference methods [296], may further enhance the computational capabilities of edge
devices. For intelligent scheduling, future research can focus on developing more adaptive task
and resource allocation strategies [417, 443]. These strategies should ensure system robustness
by dynamically adjusting to inference failures, resource constraints, and evolving workloads in
real-time.

To enhance data security, cryptographic methods such as HE, zero-knowledge proofs
(ZKP) [331], MPC [475], and blockchain-based security mechanisms [193, 363] present poten-
tial solutions. However, these cryptographic methods significantly increase the computational
overhead of LLM inference, which limits their applicability on edge devices with limited resources.
Alternative approaches such as federated learning [167, 425] and confidential computing [475]
have gained attention due to their compatibility with hybrid deployment environments, with dif-
ferential privacy playing a critical role in federated learning. Inspired by this, a promising direction
involves injecting noise into prompts while ensuring that LLMs can still correctly interpret the
intended information. Since prompts primarily consist of natural language, a prompt encoding-
decoding technique could be explored to transform prompts into structured representations for
noise injection, followed by decoding them back into natural language when needed. A related
approach is prompt obfuscation [199, 277], which can also protect sensitive information within
prompts from being extracted or exploited by adversarial entities. These techniques enhance prompt
security while preserving the effectiveness of LLM interactions.
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8 MAINTENANCE AND EVOLUTION
8.1 Research Status

LLM maintenance and evolution encompass the ongoing operation, monitoring, and upgrading of
models post-deployment, ensuring stable inference, addressing emerging issues, and continuously
improving model performance. Unlike the development and enhancement phases, which primarily
focus on model training and fine-tuning, maintenance and evolution require long-term management
strategies to sustain the efficiency, reliability, and compliance of LLMs in real-world applications.
We list the challenges and potential future directions in Figure 9.

§ 8 Maintenance and Evolution

§ 8.2 Challeng § 8.3 Road Ahead
Technical Debt Societal Compliance and SystematicallyTechnical Robustness Against Drift
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Fig. 9. Challenges and Road Ahead in §8 Maintenance and Evolution.

The rapid advancement of LLMs often leads to the accumulation of technical debt, as ad-
hoc solutions (e.g., memory management, model compression, and attention optimization) are
implemented to address short-term challenges [245]. However, these solutions may hinder long-
term sustainability by increasing system complexity and maintenance overhead. In addition to
these architectural challenges, iterative model updates introduce versioning complexities, including
API compatibility issues and dependency conflicts, further increasing maintenance efforts. As Ma
et al. [234] highlighted, APIs may be no longer used during model development, making regression
testing to be a crucial concern. While tools such as MLflow Model Registry [1] and PEFT [75]
mitigate some of these challenges, critical gaps remain in quantifying technical debt and designing
unified lifecycle frameworks that balance incremental learning with catastrophic forgetting.

Ensuring consistent model performance in dynamic environments requires addressing model
drift, such as task [2], data [142], semantic [69, 299, 304], concept [412], and knowledge [79]
drift, which are common in multi-model collaboration. Existing techniques, such as drift detection
(e.g., the Kolmogorov-Smirnov test [104]) and model compression, offer partial solutions which
may need full model retraining, remaining computationally expensive, and semantic-level drift
is often detected with significant delays. Furthermore, The increasing complexity of multi-model
collaboration makes these drifts more severe. Maintaining model performance in such settings
requires not only early drift detection but also the development of robust adaptation mechanisms
to mitigate its effects. However, current solutions remain insufficient, either relying on costly
retraining or failing to address higher-level semantic and knowledge drift, which can cause subtle
yet significant deviations in model behavior over time.

Beyond technical considerations, LLMs must also comply with evolving legal frameworks (e.g.,
the EU AI Act [70]) and ethical standards, necessitating the development of automated compliance
mechanisms that integrate regulatory constraints into model behavior. However, automating compli-
ance remains a significant challenge. While post-hoc filters and bias assessment tools help mitigate
immediate risks [350, 397], they are insufficient for preventing long-term societal harms, such as the
reinforcement of biases from incremental data updates or cross-cultural misalignment [18, 48, 345].

Thus, maintaining and evolving LLMs need comprehensive solutions that integrate technical,
operational, and regulatory considerations. Future research must explore systematic strategies
for managing technical debt, improving drift adaptation mechanisms, and developing more proactive
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compliance frameworks to ensure that LLMs remain reliable, efficient, and aligned with ethical and
legal standards.

8.2 Challenges

The maintenance and evolution of LLMs present multifaceted challenges that extend beyond
traditional SE paradigms. These challenges can be categorized into three interconnected dimensions,
encompassing both technical and societal complexities: technical debt, performance assurance,
and societal compliance and ethical risks.

Technical debt. The rapid advancements in model compression, fine-tuning, and continual
learning have led to the accumulation of hidden technical debt. For instance, the increasing com-
plexity of model architectures reduces post-training interpretability, while continual learning may
exacerbate rather than mitigate biases [245]. These technical debts pose significant risks to model
improvement, inference reliability, and security. However, due to the lack of systematic studies in
this area, a comprehensive understanding of LLM technical debt remains elusive, making it hard to
develop effective mitigation strategies.

Performance assurance. Model drift has emerged as a critical challenge, often resulting in
unexpected inference errors, degraded performance, or even the generation of harmful content.
Given the dynamic nature of deployment environments and evolving user interactions, mitigating
model drift requires robust adaptation mechanisms. Yet, existing methods remain limited in their
ability to detect and counteract drift efficiently, particularly at the semantic level, where subtle but
significant changes in model behavior can occur over time.

Societal compliance and ethical risks. As LLMs are increasingly deployed in real-world
applications, ensuring their outputs align with ethical and social values is imperative. However,
current alignment efforts remain insufficient, as adversarial attacks can manipulate even aligned
models into producing undesirable outputs. Furthermore, the emergence of alignment faking [101]
raises concerns that models may exhibit alignment during evaluation but deviate in other scenarios,
casting doubt on the reliability of existing alignment techniques. Addressing ethical alignment in
LLMs thus remains an ongoing and pressing research challenge.

8.3 Road Ahead

As of the date of writing, research on model maintenance remains limited, particularly in the
context of technical debt. However, it addresses a critical issue that deserves greater attention.
For the technical debt of LLM, we suggest that the first step in future research should be to do
work like systematically technical debt research to assess its impact, and subsequently develop
effective mitigation strategies. Additionally, LLMOps [59] has emerged as a promising paradigm
for enabling automated lifecycle management and standardized control in LLM development,
effectively mitigating common technical debt issues. For instance, LLMOps facilitates real-time
model monitoring and continuous feedback mechanisms, allowing for the timely detection and
correction of model degradation or knowledge loss, thereby preventing the long-term accumulation
of quality debt. By leveraging automation, standardization, and optimization techniques, LLMOps
holds significant potential for addressing various technical debt challenges in industrial LLM
applications, making it a compelling research direction.

Similarly, robustness against drift necessitates systematic solutions to mitigate the effects
of drift in LLMs. Future research may explore the alignment of multi-modal and multi-model
representation spaces, prompt refinement, and techniques for preserving semantic integrity in
long and sequentially evolving contexts. Additionally, the development of an automated model
evolution framework or a performance monitoring system could provide continuous assessment of
LLM performance across tasks, both during regular operation and after knowledge updates. By
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detecting model drift, these systems would allow early action to fix issues, ensuring reliability and
stability throughout the LLM development lifecycle, and preventing unexpected performance drops
while maintaining accuracy across different deployment scenarios.

Bias and ethical concerns in LLMs must not be overlooked, making adaptive ethical compli-
ance a crucial area of study. While numerous techniques have been proposed to address societal
compliance and ethical risks during LLM training, future research should focus on dynamically and
precisely adjusting ethical and bias-related concepts during model maintenance, which may involve
integrating knowledge unlearning and continual learning techniques while simultaneously address-
ing the challenge of alignment faking [101]. Furthermore, as regulatory and ethical constraints
on LLMs continue to evolve, translating legal frameworks and ethical norms into enforceable
model constraints will be essential for ensuring sustained compliance with regulatory changes
and societal expectations. Importantly, these adaptations must be achieved without introducing
excessive system complexity, thereby preserving the efficiency and scalability of LLM deployment
and operation.

9 RELATED WORK

With the rapid advancement of LLMs and their success across various applications, research on
LLMs has experienced explosive growth in recent years. To systematically summarize existing
achievements and outline future directions, a substantial number of survey studies have emerged.
Overall, the existing surveys can be categorized into two groups: those focusing on the fundamental
aspects of LLMs and those emphasizing the applications of LLMs in different domains.

On one hand, as LLMs include multiple dimensions such as model architecture, training method-
ologies, and security evaluation, many existing surveys focus on specific aspects of LLM research.
Zhao et al.[454] and Naveed et al.[256] primarily concentrate on the development trajectory of
LLMs, providing detailed reviews of key technological advancements and major research milestones.
Chang et al.[26], Xu et al.[392], and Guo et al.[110] focus specifically on evaluation techniques for
LLMs. In addition, as concerns over security risks grow with the increasing scale of models, Yao
et al.[420], Wang et al.[361], and Das et al.[51] provide systematic analyses of LLM security issues,
covering impact assessment, domain-specific vulnerabilities, and overarching security challenges,
respectively.

On the other hand, survey studies focusing on the application of LLMs have also been increasing.
In particular, the use of LLMs for SE has emerged as a highly active area of research in recent
years. Hou et al.[126] conducted one of the systematic studies in this field, followed by further
investigations by Fan et al.[78] and Liu et al. [210]. Beyond SE, several surveys have summarized the
applications of LLMs across various industries, such as telecommunications [461], medicine [340],
and education [157]. Additionally, research has explored LLMs in roles as human judges (LLM-
as-a-judge)[103, 177, 177], as well as in SE subfields such as code generation[147, 357] and code
repair [446], alongside comprehensive analyses of LLM applications [112, 154]. These studies
highlight the critical role of LLMs in today’s society and underscore their potential for future
development, emphasizing the continuing importance of advancing LLM technologies.

However, existing studies have not provided a systematic analysis of the LLM development
lifecycle from an SE perspective. To the best of our knowledge, we presents the first compre-
hensive survey in this work that examines the LLM development lifecycle through the lens of
SE. Our study systematically reviews the key SE challenges associated with LLM development and
proposes critical directions for future research, offering valuable insights to guide subsequent work
in this emerging area.
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10  CONCLUSION

This paper presents a comprehensive analysis of the challenges associated with LLMs from an SE
perspective. By systematically examining each phase of the LLM development lifecycle, we provide
an in-depth review of the current research landscape, identify key challenges, and present future
research directions. Our findings provide valuable insights to facilitate further advancements in
this field, contributing to the development of more efficient, robust, and scalable LLMs.
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