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ABSTRACT

The advent of Large Language Models (LLMs) like ChatGPT has

markedly transformed software development, aiding tasks from

code generation to issue resolution with their human-like text gen-

eration. Nevertheless, the effectiveness of these models greatly

depends on the nature of the prompts given by developers. There-

fore, this study delves into the DevGPT dataset, a rich collection of

developer-ChatGPT dialogues, to unearth the patterns in prompts

that lead to effective problem resolutions. The underlying moti-

vation for this research is to enhance the collaboration between

human developers and AI tools, thereby improving productivity and

problem-solving efficacy in software development. Utilizing a com-

bination of textual analysis and data-driven approaches, this paper

seeks to identify the attributes of prompts that are associated with

successful interactions, providing crucial insights for the strategic

employment of ChatGPT in software engineering environments.
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1 INTRODUCTION

The introduction of Large Language Models (LLMs) in the ever-

changing environment of software engineering has signaled a fun-

damental shift in how development processes are addressed. These

models have enriched automated developer support by encompass-

ing a spectrum of functionalities, from code generation to enhanced

problem-solving capabilities. The increasing reliance on these LLM-

driven tools signifies a major transformation in the software devel-

opment paradigm [4].

Despite their potential, the effectiveness of LLMs like ChatGPT

in software development is not intrinsic but contingent upon the

nature of interaction, specifically the prompts given by developers.

The quality and structure of these prompts play a crucial role in

determining the utility and accuracy of the solutions provided by

ChatGPT. This aspect of human-AI interaction remains underex-

plored, with a lack of data-driven guidelines or patterns for

optimal use in software development contexts. Therefore, this

study aims to bridge this gap by mining the DevGPT dataset [13], a

comprehensive collection of developer interactions with ChatGPT.

The primary goal is to unravel the underlying prompt patterns

that lead to successful problem resolutions, addressing three key

research questions (RQs):

• RQ1:What’s the usual conversation structure between de-

velopers and ChatGPT, and how many turns, on average,

does it take to reach a conclusion?

• RQ2: What are the most efficient prompt patterns for elicit-

ing high-quality responses from ChatGPT in software devel-

opment contexts?

• RQ3: How can the identified prompt patterns be classified

and optimized in relation to different activities of the soft-

ware development lifecycle?

Understanding these patterns has far-reaching consequences for

software engineering practice. By elucidating the characteristics of

effective prompts, this research offers practical insights for develop-

ers to enhance their interaction with ChatGPT, thereby optimizing

problem-solving and productivity in software development.

2 BACKGROUND

2.1 Prompt Patterns

In the context of developer interactions with LLMs, prompt pat-

terns [2] are fundamental structures that guide the flow and effec-

tiveness of these dialogues. These patterns serve as frameworks
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for formulating queries in a manner that enhances the relevance

and usefulness of the responses generated by the model. As illus-

trated in Table 1 and following the classification system proposed

by White et al. [11], we classify high-quality prompt patterns into

six distinct categories, each exemplified by several instances. We

will now delve into each category in detail.

Table 1: The categorization of prompt patterns.
Category Prompt Patterns

Input Semantics Meta Language Creation

Output Customization Output Automater, Persona, Visualization Genera-

tor, Recipe, Template

Error Identification Fact Check List, Reflection

Prompt Improvement Question Refinement, Alternative Approaches,

Cognitive Verifier, Refusal Breaker

Interaction Flipped Interaction, Game Play, Infinite Generation

Context Control Context Manager

Input Semantics. The input semantics category primarily involves

the meta language creation pattern, where users construct prompts

like “Whenever I say A, do B” to guide LLMs. While this helps in

contextual understanding, it risks semantic ambiguity and potential

misinterpretation of instructions by LLMs.

Output Customization. This category shapes the output of LLMs

by specifying types, formats, and structures. The output automater

pattern instructs the model to perform suggested steps, reducing

repetitive user prompts. The persona pattern guides the model to

adopt a specific role or character for problem-solving. The visualiza-

tion generator pattern focuses on creating visual outputs for tools

like Graphviz Dot [3]. In the recipe pattern, users set constraints,

and LLMs provide a step-by-step guide or action recommenda-

tions. Lastly, the template pattern uses a fixed template for LLMs’

responses, directing it to fill specific positions for a structured effect.

Error Identification. This category focuses on LLMs addressing

errors in their outputs, encompassing two main patterns. The fact

check list pattern is used to mitigate LLMs’ tendency to produce

off-target or fabricated outputs by guiding it to validate data for

authenticity. Alternatively, for theoretical deduction issues without

factual checks, prompts may request detailed explanations from

LLMs on their conclusions, enabling users to assess potential errors

in their reasoning. This approach is classified as reflection pattern.

Prompt Improvement. This category of patterns aims to enhance

prompt quality, thus improving the quality of LLMs’ outputs. The

question refinement pattern encourages LLMs to generate better,

more comprehensive prompts, potentially boosting LLMs’ task

performance. The alternative approaches pattern allows LLMs to

solve problems using varied methods, not just those directly stated

in the prompt, which could lead to more efficient or irrelevant

answers. The cognitive verifier pattern involves breaking down a

question into sub-questions and combining responses for more

precise answers [14]. Moreover, the refusal breaker pattern involves

reformulating a question to elicit a response from LLMs when

initially met with refusal.

Interaction. This category enhances interactivity with LLMs. The

flipped interaction pattern allows LLMs to ask questions during

problem-solving. The game play pattern creates a gaming atmo-

sphere for LLM responses. For repetitive tasks, the infinite gen-

eration pattern enables LLMs to continue working until stopped,

reducing the need for repeated prompts.

Context Control. This category addresses the issue of LLMs in-

cluding irrelevant details or overemphasizing unwanted aspects in

responses. The context manager pattern guides LLMs to focus on

specific areas, using directives like “only consider”, “ignore”, etc.,

to refine their response scope.

2.2 Software Development Lifecycle

According to Hou et al. [4], the software development lifecycle

includes six activities: requirements engineering, software design,

software development, software quality assurance, software main-

tenance, and software management.

Requirements engineering involves defining and managing

system requirements through gathering, analysis, specification, and

validation. It forms the foundation for the software system’s func-

tionality and performance. Software design covers GUI retrieval,

specification synthesis, and rapid prototyping. This stage designs

the system structure and components, focusing on user experience,

detailed system specifications, and validating design concepts. Soft-

ware development encompasses code generation, agile estimation,

code completion, API documentation, and optimization. It aims to

enhance efficiency, code quality, and developer experience with

various technologies and tools. Software quality assurance en-

sures software quality and stability, involving test generation, bug

localization, vulnerability detection, and other methods to verify

software functionality and performance. Software maintenance

includes bug fixing, code reviews, debugging, and responding to

user feedback. It focuses on enhancing software stability, optimiz-

ing performance, and maintaining long-term viability. Software

management involves effort estimation to determine the necessary

human, time, and resource efforts for a project, aiding in effective

planning and resource allocation.

3 METHODOLOGY

Our methodology can be divided into three modules: the Prompt

Clustering Module (PCM), the Response Analysis Module (RAM),

and the Lifecycle CategorizationModule (LCM), as illustrated in Fig-

ure 1. Utilizing the capabilities of three modules, we aim to extract

key conversations from the DevGPT dataset and analyze them in the

software development lifecycle context. Our focus is on understand-

ing how prompt patterns affect ChatGPT’s response effectiveness,

providing insights into the relationship between prompt structure

and model performance in software engineering.

DevGPT
Dataset

Code-Llama

Mistral

Code Quality Score

Patterns of Prompts

Lifecycle Classification

Figure 1: The overview of our methodology.

3.1 PCM: Prompt Clustering Module

This module focuses on extracting prompts from conversations and

clustering them based on similar topics, resulting in the formation

143

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on June 23,2024 at 15:49:32 UTC from IEEE Xplore.  Restrictions apply. 



ChatGPT Chats Decoded: Uncovering Prompt Patterns for Superior Solutions in Software Development Lifecycle MSR 2024, April 15–16, 2024, Lisbon, Portugal

of distinct topic-focused clusters. In this module, the input is the

raw data, and the output is the clustering of prompts from all

conversations processed using the OPTICS clustering method [1].

This facilitates our subsequent data analysis.

Step 1: Data Cleaning. Per DevGPT [13], each snapshot updates

the previous, leading to repeated conversations across snapshots.

We streamlined and deduplicated these across all snapshots, keeping

only the latest version of each segment to aid in upcoming clustering

operations. From the 17,908 prompts in the 20230831 snapshot, we
meticulously cleaned and retained 7,832 prompts, ensuring that

in cases of partial duplication, only the most comprehensive, or

longest, conversations were preserved.

Step 2: OPTICS clustering. After data cleaning, we aim to catego-

rize and discuss themost common topics among these non-duplicate

data points. To achieve this, we have employed the OPTICS clus-

tering algorithm [1] to process this subset of data. The OPTICS
(Ordering Points To Identify the Clustering Structure) algorithm,

effective for large datasets, identifies density-based clusters without

predefining cluster counts or density thresholds, unlike K-means

or DBSCAN. This approach, focusing on density connectivity of

points, is particularly suited to our study where cluster numbers

aren’t predetermined, making OPTICS an optimal choice for our

clustering task.

By iteratively adjusting the parameters of the OPTICS clustering

algorithm, we can record clusters for all prompts. Through sorting,

we identify the top 50 clusters for focused analysis and determine

their cluster centers. And every cluster has 4 samples at least.

3.2 RAM: Response Analysis Module

In §3.1, our study focuses on the top 50 largest clusters for pattern

recognition and quality assessment. We analyze conversations from

these clusters, assigning a quality rating to the responses generated

by prompts in each cluster.

Step 1: Pattern Categorization. To investigate the influence of

diverse questioning patterns on the effectiveness of prompts in

yielding anticipated outcomes, we classified the prompts within

each selected cluster according to the categories of patterns outlined

in §2.1 or identified them as having no specific pattern. Acknowl-

edging the potential for omissions and cognitive biases inherent in

human classification, we initiated a collaborative effort with LLMs

to enhance the accuracy and objectivity of our analysis. ChatGPT

is employed to assist in validating the prompt patterns identified

within the clustering outcomes. Each prompt undergoes a meticu-

lous manual examination to ascertain its adherence to the identified

patterns. This process culminates in the confirmation of the cate-

gorization of all prompts, as illustrated in Table 1.

Step 2: Quality Assessment. After pattern identification, the

next step involves scoring the quality of the answers. Recall that

the snapshot in DevGPT [13] is composed of a dataset generated

through conversations with ChatGPT. To ensure fair evaluation of

code quality in ChatGPT responses, we have established specific

criteria. Additionally, we’ve implemented a “peer review” process

using other LLMs, apart from ChatGPT, to maintain an objective

assessment standard. Also, considering that 40.34% of the conver-

sations involve code generation, we leverage Code-Llama-34B [8],

which excels in providing services for extended conversations and

code discussions. With the assessment from Code-Llama, we can

effectively score the code generated by ChatGPT and its corre-

sponding answers. Nevertheless, assessing with a single model can

lead to misjudgments and occasional situations. We observed that

Mistral-7B [6], stands as the best-performing LLM for its size to date.

Therefore, we used Mistral-7B for a second round of evaluation to

ensure the accuracy of judgments for Code-Llama-34B.

Our emphasis was particularly on conversations involving code

generation. For each answer, we generated a percentage-based score

using Code-Llama and Mistral. Additionally, each code snippet

received a separate percentage-based score. We compiled the score

distribution, as shown in Table 2, to facilitate further analysis. The

basis for our scoring has three main points:

• We established various code quality assessment criteria ac-

cording to Stamelos et al. [10] and constructed corresponding

prompts for Code-Llama and Mistral. For responses contain-

ing code, we use eight parameters: Cyclomatic Complexity,

Maximum Levels, Number of Paths, Unconditional Jumps,

Comment Frequency, Program Length, Average Size, and

Number of Inputs/Outputs. These were ultimately used to

assess the quality of the code itself.

• For responses not containing code, we utilize Code-Llama

and Mistral to analyze intent. The original prompt is then

reviewed to determine if the response fulfills its require-

ments. A manual static analysis phase is included for precise

assessment of reasonableness.

• Regarding readability and audience-oriented rationality, pa-

rameters such as Cyclomatic Complexity are considered.

This stage involves a subjective manual evaluation of each

answer’s readability.

3.3 LCM: Lifecycle Categorization Module

In the second module, we categorized prompts from various con-

versations into different pattern types. This module will utilize the

software development lifecycle [4] to classify different conversa-

tions, aiming to discuss the practical implications of each prompt

pattern in real-world scenarios. This approach allows us to delve

into the contextual relevance and application of these patterns,

providing insights into their effectiveness throughout the software

development process.

We start by using LLMs (i.e., Code-Llama and Mistral) together

with human efforts to classify each cluster. Following that, we

perform an analysis to derive meaningful insights from the data

related to the six activities of the software development lifecycle

as mentioned in §2.2. Concurrently, we conduct a cross-sectional

comparison to examine whether the insights drawn from patterns

are universally applicable across various lifecycles.

Finally, catering to the current trend of ChatGPT, we aim to

summarize methods for constructing prompts through data and

example comparisons. Our goal is to facilitate users of ChatGPT

(or other LLMs) in effortlessly obtaining the results they need.

4 RESULTS AND DISCUSSION

4.1 Answer to RQ1

In developer-ChatGPT interactions, developers often ask questions

and refine prompts to improve ChatGPT’s responses. To ascertain

the average number of turns per conversation, we calculate it by di-

viding the aggregate number of prompts (17,908) by the total count
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Table 2: Results of code quality assessment.

Score
Input Semantics Output Customization Error Identification Prompt Improvement Interaction Context Control No pattern

Code-Llama Mistral Code-Llama Mistral Code-Llama Mistral Code-Llama Mistral Code-Llama Mistral Code-Llama Mistral Code-Llama Mistral

100 0 1 2 31 0 5 0 2 0 0 0 0 0 4

[95,100) 26 12 97 68 31 14 28 9 29 13 24 8 2 0

[90,95) 27 40 95 102 41 49 34 44 35 46 27 43 11 12

[85,90) 1 1 53 20 24 18 13 12 7 7 9 3 18 3

[80,85) 1 1 14 32 19 28 12 23 15 23 7 12 27 34

[75,80) 0 0 3 6 9 7 8 2 8 3 0 1 7 9

[70,75) 0 0 2 6 12 14 1 3 1 4 0 0 5 5

[65,70) 0 1 1 2 1 1 0 0 1 0 0 0 0 5

[60,65) 1 0 2 2 1 1 0 0 1 0 0 0 3 2

[55,60) 0 0 1 1 0 1 0 1 0 1 0 0 1 0

[50,55) 0 0 1 1 0 0 0 0 1 1 0 0 1 1

# Prompts 56 271 138 96 98 67 75

Average 91.52 90.54 89.46 89.39 85.76 84.75 88.07 86.35 87.19 85.92 90.07 88.36 80.40 79.67

of conversations (2,706), resulting in an average of approximately

6.62 prompts per conversation. Nevertheless, this average is sub-

stantially affected by outliers. For instance, there is an exceptional

conversation comprising 573 turns, and there are 57 conversations,

each with 64 turns. It can be observed that conversations exceeding

30 turns are quite rare. Thus, our analysis focused on conversations

consisting of 30 turns or less, yielding an average of 4.05 turns and

a median of 2 turns per conversation. Detailed distributions can be

referred to Figure 2 (in Appendix).

4.2 Answer to RQ2

We notice that for each cluster with similar topics, different cate-

gories’ performance is different. To obtain a fair comparison result,

we utilized Code-Llama-34B [8] and Mistral-7B [6]. These models

are not only distinct from ChatGPT but also stand out as top-tier

language models in the current landscape, particularly in terms

of code comprehension. In conjunction with manual static anal-

ysis, we categorized various prompts and conducted a statistical

assessment of scores for different patterns, as illustrated in Table 2.

Based on the data in Table 2, it can be observed that among all

conversations, the usage proportion of the Output Customization

pattern is as high as 33.8%, making it the most frequently used

prompt mode by ChatGPT users. Within Output Customization,

the Recipe Pattern and Template Pattern are the most prevalent.

Prompt Improvement and Interaction also perform well. Input Se-

mantics and Context Control show good accuracy, but they are not

used frequently. The formulation of these two prompt modes could

be reconsidered in the future. On the other hand, for Error Identifi-

cation, a significant amount of data involves repeatedly fine-tuning

ChatGPT’s results, resulting in less than optimal performance. This

data indicates that ChatGPT’s self-correction ability still needs im-

provement, and it would benefit from user-provided templates or

interactive methods to enhance accuracy.

4.3 Answer to RQ3

Regarding the types of issues that developers most frequently

present to ChatGPT, we systematically approach this by examining

each distinct activity within the software development lifecycle.

Statistics indicate that Software Development is the predominant

area of inquiry. Consequently, we will first delve into Software De-

velopment, followed by a sequential discussion of other activities

in the software development lifecycle.

In the Software Development phase, prevalent issues include

code generation, optimization, and data analysis. From a developer’s

standpoint, it is imperative to explore efficient and precise patterns

to develop a personalized Template Pattern to bolster ChatGPT’s

performance. Furthermore, inquiries in this phase often involve

extensive code, which may sometimes exceed ChatGPT’s semantic

analysis capabilities. Utilizing Input Semantics or Context Control

when interacting with ChatGPT can significantly improve its ability

to manage scenarios with extensive code.

In the Requirements Engineering phase, questions typically

involve collecting and analyzing various issues or making inquiries

about system problems. Therefore, clarity in questioning is essential.

During this stage, the majority of issues do not involve a significant

amount of code. The high accuracy of Context Control is not appli-

cable in such scenarios. However, in this context, Input Semantics

maintains an average score of 92.14, demonstrating its effectiveness

even in situations where code is not predominant.

In the Software Design series of conversations, common in-

quiries revolve around interface modifications and architectural

design. For ChatGPT, questions related to Software Design often

involve generating code on the spot and queries about the usage of

various tools. Statistics show that all patterns but Error Identifica-

tion demonstrate great performance.

Software Quality Assurance primarily involves providing test-

ing services to users, while Software Maintenance involves soft-

ware upgrades, troubleshooting, and similar activities. In these two

phases, Error Identification is the most adopted pattern. Our ob-

servation is that multiple rounds of queries with ChatGPT to drive

itself to continuously find and solve problems could yield much

better performance than a single round of queries.

For Software Management, inquiries are predominantly made

through direct questioning (excluding code), with output customiza-

tion being the most common prompt pattern. Notably, the Template

mode stands out. Because templates provide ample information to

ChatGPT, offering it a wealth of reference material to draw from.

5 RELATEDWORK

Significant research exists on LLMs in software development, no-

tably their integration throughout the software development life-

cycle [4, 7, 9] and prompt engineering optimization [11]. Studies

focus on how tailored prompts enhance LLM performance in un-

derstanding and addressing complex software problems and code

generation [5, 12, 14]. Our discussion synthesizes these two areas

to reach an encompassing conclusion.

6 CONCLUSION

Our research delves into the interaction between developers and

ChatGPT across the software development lifecycle. We analyzed

conversation patterns, classifying and summarizing prompt types

based on their quality and usage frequency. These insights were

then integrated into the software development lifecycle to offer

guidance on prompt formulation at different development activities.
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