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Abstract
Impersonation tactics, such as app squatting and app cloning, have
posed longstanding challenges in the mobile app industry, where
malicious actors exploit the names and reputations of popular apps
to deceive users. With the rapid growth of Large Language Model
(LLM) stores like GPT Store and FlowGPT, these issues have sim-
ilarly surfaced, highlighting the urgent need for robust industry
standards and automated detection mechanisms to safeguard the
LLM app ecosystem and protect users from fraudulent practices.
In this study, we present the first large-scale analysis of LLM app
squatting and cloning using our custom-built tool, LLMappCrazy.
LLMappCrazy covers 14 squatting generation techniques and in-
tegrates Levenshtein distance and BERT-based semantic analysis
to detect cloning by analyzing app functional similarities. Using
this tool, we generated variations of the top 1000 app names and
found over 5,000 squatting LLM apps in the dataset. Additionally,
we observed 13,325 cloning cases across six major platforms. Af-
ter sampling, we find that 4.7% of the squatting apps and 18.4% of
the cloning apps exhibited malicious behavior, including phishing,
malware distribution, fake content dissemination, and aggressive
ad injection. Our work provides actionable insights for industry
stakeholders to address these growing threats and foster a safer,
more trustworthy LLM app ecosystem.
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1 Introduction
Mobile app squatting [24], where attackers publish apps with iden-
tifiers (e.g., app or package names) that mimic popular apps, such as
through typosquatting (e.g., changing “Facebook” to “Fecebook”),
is a growing threat in the mobile industry. Hu et al.[24] identified
over 10,553 squatting apps targeting the top 500 apps on Google
Play, with more than 51% classified as malicious and some reaching
millions of downloads. These counterfeit apps pose serious risks to
the industry, including data theft [10], malware infections [33], and
reputational damage to legitimate brands [42]. Despite mitigation
efforts by platforms, the sheer volume of apps and increasingly
sophisticated squatting tactics make detection and prevention a
significant challenge for industry stakeholders.

Inspired by the extensive research on mobile app squatting, we
have turned our attention to similar threats within emerging Large
Language Model (LLM) app stores [58]. With the rise of LLMs, such
as ChatGPT [38], Gemini [19], and Claude [12], the industry has
witnessed a proliferation of apps leveraging these models across
diverse domains, including chatbots, content generation tools, and
virtual assistants [6, 11, 16, 18, 39, 41]. LLM apps have gained im-
mense popularity in the industry due to their ability to perform
complex tasks, leading to the creation of entire app ecosystems
around them. However, as these LLM app stores continue to ex-
pand rapidly, we observe that they are becoming fertile ground
for LLM app squatting attacks similar to those in traditional mo-
bile app markets, as shown in Figure 1. In this context, squatting
primarily occurs at the app identifier level, where attack-
ers create apps with names that closely mimic legitimate
ones to deceive users. For example, squatting could manifest as
subtle name changes or the addition of enticing words, such as
“Canva Pro”, tricking users into believing they are using an official
or enhanced version of a popular app. Moreover, LLM app stores

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn


FSE Companion’25, June 23–27, 2025, Trondheim, Norway Y Xie, X Hou, Y Zhao, K Chen, and H Wang

have significantly lowered the barrier to entry for developers. This
democratization of development allows individuals from various
backgrounds, even those with limited programming experience,
to create and publish apps. While this inclusivity fosters industry
growth, it also makes it easier for attackers to clone the entire LLM
app not only the app’s name but also its functionality. We refer to
this more insidious form of attack as LLM app cloning, where the
cloned app mirrors the legitimate one in nearly every aspect,
making it even harder for users to discern the difference.

The aforementioned phenomenon has severely impacted the
LLM app industry. By conducting keyword searches in the Ope-
nAI Community [14], we identified numerous posts in which users
expressed strong dissatisfaction with counterfeit apps. Further-
more, many large enterprises like IKEA [27] have started deploying
their apps in LLM app stores. If counterfeiting becomes widespread
or brand impersonation occurs, these enterprises would not only
suffer direct financial losses but also face immeasurable indirect
impacts such as brand value damage and user attrition. However,
current LLM app stores primarily rely on manual processes for app
review. With the massive volume of app submissions, this approach
consumes substantial human resources while failing to maintain
adequate review efficiency and accuracy, posing a critical challenge
for the industry’s scalability and security.

To comprehensively investigate squatting and cloning in LLM
app stores, we focus on six prominent LLM app stores (i.e., GPT
Store [39], FlowGPT [18], Poe [41], Coze [16], Cici [11], and Char-
acter.AI [6]) that have gained significant traction due to the wide-
spread adoption of LLM-powered apps. In our study, we develop a
tool, LLMappCrazy1, designed to automatically detect squatting and
cloning instances within these ecosystems. Using LLMappCrazy,
we systematically examine app identifier variations and functional
cloning across the GPT Store, identifying potential 5,187 squatting
LLM apps and 6,094 cloning LLM apps. And we also detect other
features of apps in six LLM app stores. Our results reveal the scope
of the problem: we found 13,325 cloned apps, confirming that this
phenomenon is not isolated to mobile app markets but is rapidly
spreading into the LLM app ecosystem. The findings indicate that
4.7% of the squatting apps and 18.4% of cloning apps exhibited ma-
licious behavior, and some of them had amassed significant user
downloads, highlighting the urgent need for solutions across the
entire LLM app industry.
Contributions.We make the following main contributions:

(1) To our knowledge, this is the first detailed investigation into
squatting and cloning attacks within LLM app stores.

(2) We develop LLMappCrazy, a tool that detects squatting and
cloning apps using 14 squatting-generation techniques and
advanced semantic analysis.

(3) Using LLMappCrazy, we conduct a large-scale empirical
study across six LLM app stores, identifying 5,187 squatting
LLM apps and 13,325 cloning LLM apps.

(4) We find that 4.7% of the identified squatting LLM apps and
18.4% of cloning LLM apps exhibit malicious behavior, includ-
ing phishing, malware, and ad injection. We identified 227

1The artifact is publicly accessible at https://anonymous.4open.science/r/LLM_app_
experiment-D10F/.

LLM apps that exhibit a high degree of similarity in various
features to other apps.

(5) We study the impact of LLM app squatting and cloning,
discovering that these apps have reached up to 2.7 million
conversations, posing significant risks to platform trust.

2 Background and related work
2.1 LLM App Store
LLMs are advanced AI systems designed to understand and generate
human language. Through training on vast datasets, they produce
coherent and contextually relevant responses. As LLM technology
has progressed, LLM apps [58] have emerged to perform specific
tasks like text generation and translation, while LLM app stores
serve as centralized platforms where users can discover and share
these applications. For example, OpenAI’s GPT Store has become a
key hub for users and developers to share LLM apps.

Several studies explored the ecosystem and security of LLM app
stores [30]. Zhao et al. [58] provided a vision and roadmap for
the analysis of LLM app stores, outlining the future directions for
research. Zhang et al. [57] conducted an initial analysis of GPTs dis-
tribution and potential vulnerabilities, while Su et al. [46] provided
comprehensive mining of the GPT Store, examining app character-
istics and user engagement. Additionally, Yan et al. [54] explored
the GPT Store ecosystem, focusing on distribution, deployment, and
security aspects. To support further research, Hou et al. [23] intro-
duced GPTZoo, a dataset containing over 730,000 GPT instances. In
terms of security, Hou et al. [22] examined the security of LLM app
stores, highlighting critical vulnerabilities and security challenges
in these platforms. Tao et al. [48] discussed the risks associated
with custom GPTs, Hui et al. [26] uncovered vulnerabilities related
to prompt leaking attacks. Antebi et al. [5, 34] analyzed the misuse
of custom GPTs and malicious services integrated with LLMs.

However, while these works cover various aspects of LLM apps,
the issues of LLM app impersonation, such as squatting and cloning,
remain underexplored, posing significant risks to the expanding
LLM app ecosystem and warranting further investigation.

2.2 Squatting Attack.
Domain squatting[53] involves registering domains similar to legit-
imate ones with malicious intent. A common form, typosquatting,
exploits users’ typographical errors when typing domain names,
diverting traffic from legitimate sites. Agtenet al. [3, 45] provide
detailed analyses of typosquatting, with the latter highlighting
the effectiveness of character permutations and substitutions in
deceiving users.

Domain squatting was traditionally linked to web attacks but
has since expanded into other areas. Szurdi et al. [47] examined
email typosquatting, where attackers register emails similar to le-
gitimate ones to intercept communications or conduct phishing.
Griffiths [21] explored its role in business email compromise (BEC)
attacks. Squatting has also spread to programming package man-
agers, where attackers publish malicious packages with names
resembling popular libraries, as seen in package typosquatting in
PyPI, RubyGems, and NPM [49–51]. Taylor et al. [50] suggested
defense strategies, while Vu et al. [51] analyzed typosquatting in
Python. In the mobile app ecosystem, Hu et al. [24] investigated
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(a) A popular LLM app. (b) A squatting app.

Figure 1: An example of LLM app squatting.

mobile app squatting, where malicious apps use names similar to
legitimate ones to deceive users. Chen et al. [9] introduced GUI-
squatting, where phishing apps replicate the graphical interface of
legitimate apps to trick users into providing sensitive information.

While squatting in traditional domains, emails, package man-
agers, and mobile apps has been extensively studied, squatting
within LLM app stores has received limited attention. Our work
seeks to fill this gap.

2.3 Cloning Detection
Cloning has beenwidely studied in software development [7, 28, 29],
especially in mobile app ecosystems, where cloned apps raise sig-
nificant security concerns such as malware distribution, intellectual
property theft, and privacy violations. Rattan et al. [43] reviewed
software clone detection, highlighting challenges like bug propaga-
tion and maintenance issues. In mobile apps, various studies have
focused on detecting clones in both official and unofficial markets.
Crussell et al. [17] first addressed the issue with detection meth-
ods based on app metadata and code similarity. Wang et al. [52]
introduced Wukong, a scalable two-phase approach using static
and dynamic analysis. Chen et al. [8] proposed a hybrid method
balancing accuracy and scalability, while Lyu et al. [35] developed
SuiDroid, a system resilient to obfuscation. Niu et al. [36] combined
static and dynamic analysis for clone detection, and Hu et al. [25]
introduced a UI-based approach to detect clones mimicking the
visual design of legitimate apps.

Recent advancements in clone detection [37] have utilized ma-
chine learning and deep learning models. Zhang et al. [56] high-
lighted the vulnerabilities of machine learning-based detectors
when faced with semantic-preserving code transformations, show-
ing how subtle syntax changes can bypass detection. And Kha-
jezade et al. [31] evaluated few-shot and contrastive learning meth-
ods, demonstrating their effectiveness in detecting clones with
minimal labeled data, suitable for large-scale ecosystems.

As LLM app stores grow, cloning challenges are likely to arise.
While advanced detection techniques like machine learning are
crucial for safeguarding these stores, their effectiveness for LLM
cloning remains unclear. We aim to explore this issue.

3 Motivating study
The aforementioned research highlights the potential risks of LLM
app squatting and cloning, indicating these threats may be wide-
spread in the LLM app ecosystem. To explore this, we conduct a
preliminary study to (1) confirm the presence of these threats and

(2) assess if existing squatting detection techniques can effectively
identify them, forming the foundation for our later methodology.

3.1 Methodology
To detect potential squatting in LLM apps, we generate variations
of several popular app names from the GPT Store and check for
their existence in online repositories.
Generating squatting names. We begin by selecting the top
10 recommended LLM apps from the GPT Store, each with sig-
nificant user engagement, as shown in Table 1. For each app, we
manipulate the names to create potential squatting variations that
attackers could exploit. We use AppCrazy[24], a tool inspired by
domain squatting generators like URLCrazy [2] and DNSTwist [1].
AppCrazy includes 11 models tailored for mobile app ecosystems,
such as punctuation deletion (e.g., “DALL·E” to “DALLE”), char-
acter insertion (e.g., “DALL·E” to “DALLLEE”), and substitution
(e.g., “DALL·E” to “DALL3” ). Using these models, we generate 625
variations from the app names of the 10 selected apps.
Verifying squatting names. To verify whether these squatting
names exist in the wild, we rely on GPTZoo [23], a metadata dataset
that tracks over 730,000 LLM apps from the GPT Store. We run an
automated search using the 625 generated squatting names in the
GPTZoo dataset. This search returns 32 results that match our squat-
ting name variations. We then manually verify these apps using the
GPT Store to determine whether the apps are legitimate or potential
squatting attempts. This manual review is crucial for eliminating
false positives. Through this process, we identify 28 apps that ap-
pear to be squatting on popular LLM app names, demonstrating
the prevalence of squatting in the LLM app ecosystem.

3.2 Motivating Results
Hu et al. [24] have demonstrated that the effectiveness of AppCrazy
significantly outperforms other domain squatting generators such
as URLCrazy. Therefore, we only compared the performance of our
tool with that of AppCrazy. As shown in Table 1, we identified 28
squatting apps. Of the 11 generation models used by AppCrazy,
only 4 proved effective in generating squatting apps. Out of the
625 name strings generated, only 28 matched real squatting apps,
meaning that more than 95.52% of the generated strings did not
identify any squatting cases. Interestingly, during this process, we
also encountered squatting apps not directly identified by the names
generated by AppCrazy. For instance, when querying the GPTZoo
dataset [23], we found several “related” apps. Manually reviewing
these results, we identified 34 squatting apps that did not directly
match the names generated by AppCrazy.

3.3 Observations
Our study confirms the existence of squatting and cloning threats
in the LLM app ecosystem but also reveals significant limitations
in current detection methods, including missed squatting apps and
inefficiencies in name-generation models. Manual review, while
effective in reducing false positives, is not scalable, emphasizing
the need for improved, automated techniques. Additionally, struc-
tural differences between LLM and traditional apps render existing
cloning detectionmethods inadequate, prompting the need formore
tailored approaches, which we explore in the following sections.
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Figure 2: Our approach to identifying squatting and cloning LLM apps.

Table 1: Results of the motivating study.

App Name (# Chats) AppCrazy LLMappCrazy

# Generated # Identified # Generated # Identified

Image Generator (6M+) 78 2 460 36
Consensus (5M+) 39 0 419 0
Write For Me (4M+) 53 1 447 4
Logo Creator (2M+) 59 9 441 33
Canva (2M+) 22 1 403 2
Scholar GPT (2M+) 29 7 412 15
Code Copilot (2M+) 65 7 447 8
Cartoonize Yourself (2M+) 92 1 475 2
Diagrams1(1M+) 175 0 10,623 0
Python (1M+) 13 0 393 106

Total 625 28 14,520 206
1 Diagrams: The full name of this app is “Diagrams: Show Me | charts, presentations, code”.

3.4 Terminology
In LLM app stores, attackers often employ two primary imper-
sonation techniques: LLM app squatting and LLM app cloning.
These methods enable attackers to mislead users, either by creating
apps with names similar to legitimate ones or by replicating the
functionality of popular apps. Below, we define these two forms of
impersonation in detail.

(1) Squatting LLM apps: Apps that have either identical or
slightly altered names to legitimate LLM apps.

(2) Cloning LLM apps: Apps that replicate the functionality
and overall user experience of legitimate LLM apps.

Squatting generation models generate potential squatting
names by applying techniques like character modifications to legit-
imate app names. In contrast, cloning detection models identify
cloned apps by analyzing functional similarities and detecting apps
that replicate key features of legitimate ones.

4 Approach
Our approach to identifying squatting and cloning LLM apps con-
sists of three main steps: data collection, squatting generation, and
cloning detection, as shown in Figure 2.

4.1 Data Collection
We collected app information by scraping data from six LLM app
stores: GPT Store [39], FlowGPT [18], Poe [41], Coze [16], Cici [11],
and Character.AI [44]. Then, we applied several processes to ensure
its accuracy and quality, including filtering, deduplication, and stan-
dardization. First, filtering was necessary because certain LLM apps
might have common names not exclusive to any specific app or
brand. Both the complete dataset and the filtered apps were retained
and used in subsequent experiments to detect name duplication or
squatting (reasons discussed § 7.2). Next, we performed deduplica-
tion by comparing app ids, which are unique to each app, to ensure
that the dataset contained unique entries. Finally, we standardized
the data into JSON format to facilitate the smooth execution of
experiments and ensure reliable results. Our analysis focused on
three key fields: app name, description, and instructions. The
app name was used in experiments to detect duplicate or squatting
names, while both the description and instructions were uti-
lized for cloning detection, with the description showcasing the
app’s public-facing features and the instructions serving as its
behavioral guide, similar to source code.

4.2 Squatting Generation Models
Inspired by the squatting name techniques introduced inAppCrazy [24],
we developed LLMappCrazy, a tool tailored for detecting squatting
in the emerging ecosystem of LLM apps.While LLMappCrazy builds
upon the foundation of AppCrazy, our preliminary investigation
revealed several key differences between mobile app squatting and
LLM app squatting. To address this, we extended AppCrazy intro-
ducing methods like emoji and string expansions. Additionally, we
adapted several package name squatting techniques fromAppCrazy
to suit LLM apps. As illustrated in Figure 3, LLMappCrazy employs
14 squatting generation models.
Mutation-based models. We retain six mutation-based models
from AppCrazy, which generate squatting names by exploiting
typographical errors. Below are the models we modified to address
the specific characteristics of LLM apps.
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Figure 3: The 14 kinds of squatting-generation models used
in this work. The 6 models in black are inherited from Ap-
pCrazy [24], while the 8 models in red that are either newly
introduced or modified in LLMappCrazy to target LLM apps.

(1) Case Substitution: Changing uppercase characters to lower-
case and vice versa, e.g., “DALL·E” into “dall·e”.

(2) Punctuation Deletion: Removing punctuation marks entirely,
e.g., “DALL·E” becomes “DALLE”.

(3) Punctuation Substitution: Replacing punctuation marks with
others (e.g., underscore), e.g., “DALL·E” into “DALL-E”.

Combosquatting generationmodels.We extend traditional com-
bosquatting generation models to include five distinct techniques
that are especially relevant to LLM apps. In addition to the standard
string manipulations, we introduce new techniques that account
for the unique use of symbols and emojis in LLM app names:

(1) String Expansion: Adding characters before or after the app
name, e.g., “DALL·E” into “DALL·E1”.

(2) Symbol Expansion: Inserting or replacing characters with
symbols such as “+”, “#”, or “$”, e.g., “DALL·E” into “DALL·E+”
or “DALL·E#”.

(3) Word Expansion: Appending or prepending descriptive words
to the app name, e.g., “DALL·E” into “DALL·E pro”.

(4) Emoji Expansion: Adding emojis to the app name, e.g., “DALL·E”
into “DALL·E ”, exploiting the visual appeal and perceived
legitimacy conveyed by emojis.

(5) String Rearrangement: Rearranging parts of the package
name, e.g., “DALL·E” to “E·DALL”.

Evaluation. To evaluate the effectiveness of squatting generation
models, we compare the results from our tool, LLMappCrazy, with
those of the traditional domain squatting approach, AppCrazy, used
in the motivating study (see § 3). The same set of 10 popular apps
is used. With LLMappCrazy, 14,520 squatting names are generated
(as shown in Columns 4-5 of Table 1). Consistent with the pro-
cess in the motivating study, these squatting names are searched

in the GPTZoo dataset. The search identifies 206 squatting LLM
app candidates with distinct IDs. Figure 4 shows the confirmed
squatting apps generated by the 14 squatting-generation models.
The newly added word expansion model is the most effective, with
114 squatting apps falling into this category.
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Figure 4: The distribution of squatting apps across models.

4.3 Cloning Detection Models
Before conducting cloning detection, we preprocessed the descrip-
tions and instructions in the dataset through tokenization, white-
space normalization, and punctuation removal to ensure consistent
and clean input for analysis. We employed Levenshtein distance
and BERT-based semantic similarity to detect plagiarism or
app cloning in LLM app descriptions and instructions. Leven-
shtein distance identified exact or near-exact matches by measuring
minimal edits, while the BERT model captured deeper semantic
similarities, even with different wording. By analyzing both these
components, we effectively detected cloning attempts, revealing
instances of content replication ranging from direct copying to
subtle paraphrasing, and highlighting the prevalence of cloning in
the LLM app ecosystem.
1) Levenshtein distance calculation

To detect cases of content cloning with minor variations, we
employed Levenshtein distance algorithm [55], which calculates
the minimum number of single-character edits (insertions,
deletions, or substitutions) required to transform one string into
another. For each app pair, we computed the Levenshtein distance
between their instructions fields, which act as the core content
or behavioral guide of the LLM app, similar to the source code.

Levenshtein Similarity = 1 − Levenshtein Distance
Maximum String Length

(1)

where the Maximum String Length is the length of the longer
string. This allowed us to compare app pairs with different text
lengths. We focused on app pairs where the Levenshtein similarity
scored between 0.95 and 1.0, excluding exact matches (similarity
= 1). For example, with an instructions field of 500 characters,
fewer than 25 modifications (5% of the total length) would flag
potential plagiarism, and for fields of 1000 characters, fewer than 50
changes would trigger detection. This threshold effectively captured
minor variations while avoiding false positives due to insignificant
changes. To ensure the rigor of our analysis, we excluded compar-
isons where the instructions field was shorter than 50 characters,
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filtering out trivial entries such as single words or short phrases.
This ensured that our analysis focused on substantial content repli-
cation. Focusing on high-similarity pairs enabled us to detect apps
with minimal textual differences, suggesting potential attempts to
clone content while avoiding exact duplication.
2) BERT-based semantic similarity calculation

To detect more nuanced instances of app cloning, where the
wording might vary while the underlying meaning remains consis-
tent, we employed a BERT-based model [32] to compute semantic
similarity. Unlike character-based methods, this model utilizes
contextual embeddings to capture the semantic closeness
between two pieces of text, allowing for the detection of deeper,
more subtle forms of copying. The BERT model maps each input
text into a high-dimensional vector space, where semantically sim-
ilar texts have closer vector representations. Given two texts, 𝑡1
and 𝑡2, their semantic similarity score is calculated using the cosine
similarity of their vector embeddings:

Cosine Similarity(𝑡1, 𝑡2) =
v1 · v2

∥v1∥∥v2∥
(2)

where v1 and v2 are the BERT-generated embedding vectors for
texts 𝑡1 and 𝑡2, respectively. The cosine similarity score ranges from
0 to 1, with higher values indicating greater semantic similarity.

We set a threshold of 0.95 for semantic similarity, meaning that
if two texts scored above this value, they were flagged as having a
strong semantic resemblance. This high threshold ensures precision,
minimizing false positives, while still capturing relevant instances
of duplication. Similar to the Levenshtein distance method, we ex-
cluded LLM apps where the instructions fields were shorter than
50 characters. Additionally, due to model limitations, we excluded
LLM apps with instructions fields that exceeded 512 bytes in
length. Unlike the Levenshtein method, however, we did not ex-
clude app pairs with identical instructions fields, as these cases
still provided valuable insights into semantic consistency.

When the text’s meaning remained consistent but the
wording varied, the BERT-based approach wasmore effective
than character-based methods. For example, consider three apps
in Figure 5. The Levenshtein method misses the similarity between
App1 and App2 due to minor text variations, while the BERT model
effectively captures the semantic consistency across all three apps,
demonstrating its advantage in detecting deeper similarities.

5 Measuring Impersonation apps
In this section, we use LLMappCrazy to analyze impersonation
apps in LLM app stores, focusing on squatting and cloning. Our
investigation is guided by the following RQs:
RQ1 To what extent are squatting apps present? Do they pri-

marily target popular apps? This RQ aims to analyze the
prevalence of squatting apps in LLM app stores and determine
whether they target more popular apps.

RQ2 How widespread is cloning apps, as another form of
impersonation, in LLM app stores? The low barrier to
creating LLM apps has allowed cloning apps in LLM app
stores to emerge. Our goal is to investigate the prevalence of
these apps and understand their potential impact on users
and the ecosystem.

RQ3 How many cases of potential cross-platform plagiarism
exist? What are the situations in different stores? We
aim to understand how app duplication across platforms im-
pacts the uniqueness and integrity of LLM apps, and whether
certain stores are more vulnerable to this issue than others.

5.1 RQ1: Distribution of Squatting LLM Apps.
In response to RQ1, we explore the prevalence and characteristics of
app squatting among LLM apps. Our experiments rely on data from
GPTs APP [20], the largest third-party GPT store, which provides
rankings for the top 1000 LLM apps. This platform is essential
for our analysis as it offers a ranking system not available in the
official GPT Store [38], making it representative. To minimize false
positives, we applied a filtering process. Apps signed by the same
developer but with slight name variations, such as platform-specific
versions, were excluded. For example, different releases of an “Im-
age Generator” app by the same developer across platforms were
not considered squatting. Additionally, apps with common, non-
branded names, like “Image Generator”, were filtered out unless
their package names followed predefined squatting patterns.

Once the data was extracted, we systematically compared it
against the GPT dataset to identify instances of name duplication.
This comparison revealed that 6,094 apps shared their names with
those found in the top 1000 apps, suggesting a widespread oc-
currence of potential app squatting behavior. Notably, the most
frequently duplicated app name was “Prompt Engineer” [4], which
appeared 214 times across different records and was ranked 137th,
indicating its significant popularity and the possible intent to cap-
italize on its recognition. Table 2 below provides an overview of
the five apps with the highest number of duplicate names, offering
insights into the scale of this phenomenon and the types of apps
most often targeted.

Table 2: Top 5 apps with the most duplicate names.

App Name Author Name # Duplicate Name Apps

Prompt Engineer aitoolreport.com 214
Translator Caleb Ye 154
Research Assistant Liseli akayombokwa 129
Resume Builder masterinterview.ai 127
Logo Creator None 116

Table 3: Top 5 apps with the most squatting app names.

App Name Author Name # Squatting Name Apps

AI Homework Helper solvely.ai 132
GPT Store Finder EmbedAI 126
Study+ Homework Helper smartprompt.xyz 122
Essay writing assistant Corine Gorczany 109
Python Nicholas Barker 106

To further examine the prevalence of app squatting, we utilized
our tool LLMappCrazy, to generate various name variations for
the top 1000 apps, incorporating common squatting tactics such
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how make a normal T-shirt to have high sales and are expensive

How to make a normal shirt fasten to have high sales and are expensive

how make a normal shirt fasten to have high sales and are expensive

pjHh3qS8kR1SYKwBEpaZ8

App ID Instructions

10zFoKEq3s7lt1WuFmCzl

nvqbuCcALJsr3RWn9S1ZG

BERT

0.96

0.93 0.97

0.97

Levenshtein 
Distance

App1
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Figure 5: A real-world example highlights the differences between Levenshtein and BERT-based semantic similarity methods.
Although all three apps convey the same core meaning, a typographical error with the term “fasten” in App2 and App3 causes
the Levenshtein method to detect similarity only between these two, missing the similarity between App1 and App2.

as case changes, character substitutions, misspellings, and expan-
sions. Using these generated variants, we identified a total of 5,187
apps within the dataset that matched the modified names, high-
lighting the extensive use of squatting tactics. Table 3 lists the top
5 apps with the most number of squatting apps. Figure 6 shows
the distribution of 5,187 squatting apps across 14 models. The top
three patterns, string rearrangement (3,294), word expansion
(1,150), and punctuation deletion (584), were newly introduced or
modified for LLM apps, proving their effectiveness. Less common
patterns like case variation (458 apps) highlight additional attack
strategies, offering insights for improving detection.
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Figure 6: The distribution of squatting apps across models.

To explore if squatting apps specifically target more popular
apps, we analyzed the distribution of duplicate and squatting apps
across different ranks. As shown in Figure 7, higher-ranked apps
(closer to the top of the y-axis) have more duplicate and squatting
instances, indicated by the denser clustering in the upper region.

As LLM app stores target the general public, most app
names are common and familiar, with few uniquely distinc-
tive ones. However, squatting still occurs among these app names.
For instance, “logogpts.cn” created an app named “LOGO”, and
another app, “LOGO+”, by “Rodolfo Arce”, shares an identical de-
scription, suggesting potential squatting. This similarity strongly
suggests a potential case of squatting. We manually filtered out
apps with prevalent names from the top 1000 apps. After filtering,
we retained 654 apps and identified 2,871 squatting LLM apps.

Answer to RQ1.We found that the top 1,000 LLM apps were as-
sociated with 5,834 squatting apps, with more popular apps being
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Figure 7: Distribution of fake and squatting apps by app rank.

more frequently targeted. This could be due to their higher visi-
bility and user demand. The most common method for generating
squatting names in LLM app stores involves slight variations of the
original app names, i.e. string Rearrangement, word Expansion,

5.2 RQ2: Prevalence of Cloning LLM Apps.
To address RQ2, we examined app cloning among 785,129 LLM apps
from six platforms, focusing on two key fields: the description
highlights the app’s features, while the instructions serves as
source code. We performed pairwise comparisons of these fields
to identify identical or highly similar content, suggesting possible
cloning. Our experiments covered both exact matches and seman-
tic similarities, shedding light on the extent and nature of app
cloning within the LLM app ecosystem.
1) Exact match for identical content

We first used exact string matching to detect LLM apps with
identical instructions or descriptions, effectively identifying
direct duplicates where the text was copied verbatim, potentially
misleading users into believing these apps are unique. Our analysis
revealed significant app cloning across various LLM platforms, with
1,058 apps sharing identical instructions and 8,765 apps having
identical descriptions. The GPT platform had the highest num-
ber of cloned descriptions (7,570 apps), while FlowGPT exhib-
ited the most cloned instructions (784 apps). Additionally, 209
apps had both identical instructions and descriptions, with
intra-platform plagiarism particularly common on platforms like
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Table 4: Overview of cloning apps in six LLM app stores.

Store Name LLM Apps Identical Instructions Identical Descriptions Identical Both1

# LLM Apps # LLM Apps % of Total # LLM Apps % of Total # LLM Apps % of Total

GPT Store 662,294 36 0.01% 7,570 1.14% 0 0
FlowGPT 34,271 784 2.29% 944 2.75% 121 0.35%

Poe 16,544 185 1.12% 210 1.27% 76 0.46%
Coze 51,912 33 0.06% 0 0 0 0
Cici 13,060 1 0.01% 1 0.01% 0 0

Character.AI 7,048 20 0.28% 40 0.57% 12 0.17%

Total 785,129 1,058 0.13% 8,765 1.12% 209 0.03%
1 Identical Both: Number of LLM apps with identical descriptions and instructions.

FlowGPT and Poe. Table 4 (Columns 3-8) provides a detailed break-
down of these results across all platforms.
2) Similarity detection

As detailed in § 4.3, we used two methods: Levenshtein dis-
tance andBERT-based semantic similarity, to detect app cloning
with non-identical but highly similar instructions or descrip-
tions. It allowed us to identify subtle cloning behaviors, where
minor textual changes were made to mask duplication.
Levenshtein distance calculation. Well-suited for detecting sub-
tle variations like minor edits or typos, this method helps identify
near-duplicate content. Applying a 0.95 similarity threshold to the
instructions fields of 42,544 apps (after filtering out those with
fewer than 50 characters), we identified 557 groups with high simi-
larity, involving 1,637 apps. As shown in Table 5, FlowGPT had the
most similar apps (1,396), with approximately 3.84% of apps across
the six platforms exhibiting near-duplicate instructions. These
findings suggest widespread duplication and potential plagiarism,
particularly on FlowGPT, warranting further investigation.

Table 5: Results of Levenshtein distance method.

Store Name Total Detections Detection Results Percentage

GPT Store 10,358 22 0.21%
FlowGPT 23,906 1,396 5.84%
Poe 5,177 188 3.63%
Coze 1,429 23 1.61%
Cici 0 0 0
Character.AI 1,674 13 0.78%

Total 42,544 1,637 3.84%

BERT-based semantic similarity calculation. To further detect
potential app cloning, we applied BERT-based semantic matching
to the instructions fields, focusing on apps with 50 to 512 charac-
ters. This analysis covered 12,048 apps, using a similarity threshold
of 0.95. We identified 253 groups of semantically similar apps, in-
volving 2,113 apps. As shown in Table 6, FlowGPT had the highest
number of similar apps (1,705). BERT’s ability to capture semantic
meaning makes it effective for detecting cloning behaviors that
go beyond exact text matches, revealing more nuanced forms of
content duplication across platforms.

Table 6: Results of BERT-based method.

Store Name Total Detections Detection Results Percentage

GPT Store 1,930 92 4.77%
FlowGPT 5,129 1,705 33.24%
Poe 3,092 258 8.34%
Coze 960 8 0.83%
Cici 0 0 0
Character.AI 937 50 5.34%

Total 12,048 2,113 17.54%

Answer to RQ2. Our findings reveal a high prevalence of cloned
apps across LLM app stores, with significant content duplication de-
tected on multiple platforms. We identified 557 groups with highly
similar instructions and 253 groups based on semantic similarity,
involving thousands of apps. These clones pose risks by creating
confusion over app authenticity, potentially undermining user trust
and the integrity of the LLM app ecosystem.

5.3 RQ3: Cross-platform Analysis
We analyzed app similarities across multiple LLM app stores to
understand how duplication affects the uniqueness and integrity
of LLM apps and whether certain stores are more vulnerable. By
tracking platform data, we identified cross-platform plagiarism
through app groups spanning different stores. In the cloning exper-
iment, we found 13 groups with identical instruction, 130 groups
with identical description, and 8 groups where both matched
across platforms. Using the Levenshtein distance method, we iden-
tified 22 groups of suspected plagiarism, while BERT-based se-
mantic matching revealed 40 groups with deep similarities, even
when wording was altered. These findings highlight the complexity
of cross-platform plagiarism, where cloning often involves subtle
modifications preserving core content. The heatmaps in Figure 8a
and Figure 8b show that plagiarism clusters most heavily among
FlowGPT, Poe, and GPT Store, indicating these platforms are par-
ticularly prone to cloning and squatting.

Answer to RQ3. Our analysis identified numerous cases of cross-
platform plagiarism, with 13 groups sharing identical instruction,
130 groups with identical description, and 8 groups matching in
both. Additionally, 22 groups showed high similarity via Leven-
shtein distance, while BERT analysis found 40 groups with deep
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(a) Cross-platform detection result of similarity detection.
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Figure 8: Cross-platform detection result.

semantic overlap. FlowGPT, Poe, and GPT Store were particularly
affected, suggesting these platforms are more prone to cloning and
squatting, raising concerns about the integrity of LLM apps.

6 Threat and Impact
we then examine the threat posed by impersonation apps and their
impact on users and the LLM app ecosystem by exploring the
following research questions:
RQ4 How many impersonation (squatting and cloning) apps

are malicious? Understanding how many of these squatting
and cloning apps are malicious will provide insight into the
extent of harm they can cause, such as spreading malware or
conducting phishing attacks.

RQ5What is the impact of these impersonation apps on users
and the LLM app ecosystem? This RQ seeks to assess how
impersonation apps affect user trust and security, as well as
their broader impact on the LLM app ecosystem’s integrity.

6.1 RQ4: Malware Presence
When certain apps exhibit a very high degree of similar-
ity in the fields of app name, description, and instructions,
it is clear that these apps are deliberately imitating others,
strongly suggesting an intent to impersonate. To quantify this, we

conducted a comprehensive analysis of the squatting and cloning
experiment results from RQ1 and RQ2 and identified 227 apps that
met the criteria for high similarity. Following this, we aimed to
evaluate the potential malicious behavior within squatting and
cloning apps. Out of the 5,187 squatting apps and 13,325 cloning
apps identified, we selected a representative sample of 358 squat-
ting and 370 cloning apps, using a 95% confidence level and a 5%
confidence interval to ensure statistical significance. This sample
underwent manual inspection to detect malware, phishing, and
ad injection, assessing the risks these impersonation apps might
pose to users. Figure 9 illustrates the proportion of malicious apps
identified in the sample.
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Figure 9: Result of sampling analysis.

After a thorough manual inspection of 358 selected squatting
apps, we found 4.7% violating LLM app usage policies [22]. Of
these, 1.7% posed a risk of recording and utilizing user privacy
data, while 3.0% were suspected of misleading users. In the 370
cloned apps, 1.9% provided instructions encouraging guideline
violations, and 0.3% linked to an unknown website, raising phish-
ing concerns. Alarmingly, 15.3% apps directed users to generate
inappropriate content, including sexual, violent, or illegal mate-
rial. Furthermore, 0.8% exhibited fraudulent behavior, claiming to
operate “fully automated with a high win rate” to lure users with
false promises. As shown in Figure 10, the malicious behaviors
detected in our study fall into three categories: policy violations,
inappropriate content, and disinformation, with inappropriate
content being the most prevalent. Apps promoting illegal content,
misleading users, or encouraging policy violations pose serious
risks to user safety and data security, undermining trust in LLM
app ecosystem. If left unchecked, these apps could normalize un-
ethical practices and attract more malicious actors. Our findings
highlight the urgent need for stricter regulations and robust moni-
toring in LLM app stores to ensure user protection and maintain
ethical standards, fostering a secure and trustworthy environment.

Answer to RQ4. We found that 227 apps with high similarity in
app name, description, and instructions, indicating deliberate
impersonation. Additionally, among the examined apps, 17 out
of 358 squatting apps and 68 out of 370 cloning apps were non-
compliant. These apps often provided instructions that violated
policies, generated inappropriate content, or engaged in fraudulent
practices, underscoring significant security risks and the urgent
need for stronger regulations to protect users and the ecosystem.
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Figure 10: The distribution of malicious behaviors.

6.2 RQ5: Impact on Users
Squatting apps in LLM app stores have reached high usage levels,
significantly affecting users. Of the 5,187 identified squatting apps,
5,016 had conversation counts between 0 and 1,000, showing a large
portion with lower engagement. However, 171 apps exceeded 1,000
conversations, and 72 surpassed 50,000, demonstrating substantial
user interaction. For cloning apps, of the 13,325 identified, 10,663
had conversation counts between 0 and 1,000, while 2,662 exceeded
1,000, and 776 exceeded 100,000, highlighting significant user in-
teraction. The top cloned app reached 27,527,998 conversations.
In particular, one of the cloning app had 12,969,368 conversations,
while another app with nearly identical instructions ranked third
with 4,236,464 conversations. These two apps, published by different
creators, suggest potential unauthorized replication, posing risks
due to high engagement. Figure 11 shows the conversation count
distributions, with squatting apps peaking broadly at higher counts
(around 102 to 105) and cloning apps peaking sharply at lower
counts (around 101), indicating squatting apps generally achieve
higher user engagement and visibility, thus posing a greater threat.
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Figure 11: Kernel density distribution of conversation counts.

High conversation volumes in squatting and cloning apps in-
crease the risk of users unknowingly interacting with unautho-
rized or low-quality replicas, exposing them to unverified content,
potential malicious activities, and privacy issues. This concern is
highlighted by our study in the OpenAI Community [40], where
keyword searches revealed numerous complaints regarding pirated
LLM apps. Some users referred to these counterfeit apps as “bad

apps,” criticizing their developers for “simply copy-pasting oth-
ers’ apps without any true understanding of the underlying pro-
cesses” [13]. And some pointed out that because of the large number
of pirated apps and the lack of regulation, “serious developers are
moving away from the ChatGPT ecosystem” [15]. It indicates that
the users’ trust in the LLM app store is gradually collapsing.

Answer to RQ5. Squatting and cloning LLM apps show high user
engagement, significantly affecting user experience and platform
integrity. Of 5,187 squatting apps, 171 had over 1,000 conversa-
tions, with the top app reaching 4 million interactions. Similarly,
2,662 of 13,325 cloning apps exceeded 1,000 conversations, with the
most-used app hitting 27.5 million. Interaction with unauthorized
replicas exposes users to security risks and diminishes visibility for
legitimate apps, highlighting the need for stronger oversight.

7 Discussion
7.1 Mitigation & Implications
We propose strategies to address the challenges of LLM app squat-
ting and cloning, focusing on three key stakeholders:
LLM app store managers. Platforms should enhance their app
review processes by incorporating automated and manual checks
to detect duplicate or similar apps. Advanced plagiarism detection
tools can help identify potential plagiarism during the submission
process. Additionally, recommendation algorithms should be im-
proved to prioritize unique, high-quality content and reduce the
visibility of cloned apps, ensuring that users encounter a wider
variety of original options.
LLM app developers. Developers should take an active role in
protecting their apps from squatting and cloning. This includes
selecting distinct, non-conflicting app names and regularly mon-
itoring for potential infringements. If unauthorized replicas are
found, developers should report these to the platform maintainers
to ensure prompt action.
End users. Educating users about the risks of cloned or unautho-
rized apps is crucial. They should be taught to identify suspicious
apps and use tools to verify legitimacy. Developers and platforms
can help by offering resources like tutorials and reports to guide
users in avoiding squatting attacks and choosing legitimate apps.

7.2 Threat to Validity
Identical app name detection. Unlike traditional mobile app
squatting detection, our method includes identical app names in
LLM app stores, which permit duplicates. Attackers tend to use
exact names to mimic legitimate apps and deceive users. Including
identical names helps maximize squatting app detection. As many
developers choose names casually, this can lead to unintentional
duplication and false positives. To better distinguish intentional
squatting from accidental duplication, we combine squatting and
cloning detection based on both name and instruction similarity.
Popular app selection. Our detection of LLM app squatting fo-
cuses mainly on the GPT Store, as it is the only platform with app
ranking data. This research targets popular apps, which we believe
is appropriate since attackers tend to focus on well-known applica-
tions. However, future work will examine how to generalize our
findings to more LLM apps.
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Tool limitation. Although LLMappCrazy is specifically tailored
for LLM apps, the generation model may still be incomplete, leaving
room for other complex squatting methods. To address this, we
designed the squatting generation models in LLMappCrazy as an
easily extensible tool, allowing new patterns to be added seamlessly.
In cloning detection models, due to input length limitations, we
only analyzed instructions of a specified length, potentially missing
cloning in apps with longer instructions. However, our results still
provide initial evidence of cloning in the LLM app ecosystem, and
we plan to improve our detection methods in the future.
Cross-platform deduplication Different authors may use differ-
ent names across platforms, and in our cross-platform plagiarism
analysis, we can only accurately identify cases where the author
names are identical. This limitation highlights the need for addi-
tional verification to distinguish between legitimate cross-platform
distribution and unauthorized replication by third parties.

8 Conclusion
In this study, we conducted the first large-scale analysis of LLM app
squatting and cloning using LLMappCrazy. Through the detection
of 14 squatting generation techniques and leveraging both Leven-
shtein distance and BERT-based semantic analysis, we identified
over 5,000 squatting apps from variations of top app names. Across
six major platforms, we found 13,325 cloning cases. Our sampling
revealed that 4.7% of the squatting apps and 18.4% of the cloning
apps exhibited malicious behavior, highlighting significant risks to
user security and the integrity of LLM app stores. These findings
underscore the need for stronger oversight and protective measures
in the LLM app ecosystem.
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